

FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA

TEMA: "AGRIETAMIENTO POR FATIGA TOP-DOWN EN PAVIMENTOS ASFÁLTICOS"

AUTOR:

Naranjo Canales, Walter Barnye

Trabajo de titulación previo a la obtención del título de INGENIERO CIVIL

TUTOR:

Ing. Vila Romaní, Rolando. PhD Guayaquil, Ecuador 29 de agosto del 2020

CERTIFICACIÓN

Certificamos que el presente trabajo de titulación fue realizado en su totalidad por **Naranjo Canales, Walter Barnye**, como requerimiento para la obtención del título de **Ingeniero Civil.**

TUTOR

f._____

Ing. Vila Romaní, Rolando. PhD

DIRECTOR DELA CARRERA

f._____

Ing. Alcívar Bastidas, Stefany. Msc.

Guayaquil, a los 29 del mes de agosto del año 2020

DECLARACIÓN DE RESPONSABILIDAD

Yo, Naranjo Canales, Walter Barnye

DECLARO QUE:

El Trabajo de Titulación, Agrietamiento por fatiga top-down en pavimentos asfálticos previo a la obtención del título de INGENIERO CIVIL, ha sido desarrollado respetando derechos intelectuales de terceros conforme las citas que constan en el documento, cuyas fuentes se incorporan en las referencias o bibliografías. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance del Trabajo de Titulación referido.

Guayaquil, a los 29 del mes de agosto del año 2020

EL AUTOR (A)

f._____

Naranjo Canales Walter Barnye

AUTORIZACIÓN

Yo, Naranjo Canales, Walter Barnye

Autorizo a la Universidad Católica de Santiago de Guayaquil la **publicación** en la biblioteca de la institución del Trabajo de Titulación, **Agrietamiento por fatiga top-down en pavimentos asfálticos**, cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.

Guayaquil, a los 29 del mes de agosto del año 2020

AUTOR:

f._____

Naranjo Canales Walter Barnye

URKUND

Urkund Analysis Result

Analysed Document:
Submitted:
Submitted By:
Significance:

Walter.naranjo.docx (D78419394) 8/31/2020 8:52:00 PM claglas@hotmail.com 6 %

Sources included in the report:

Trabajo de Titulación. Nati Andrade y Fernando Franco.docx (D48186149) TESIS DE GRADO --JIMMY CEDENO ver. final.docx (D11499541) Tesis_Carlos Lituma.pdf (D37500410) [VILA]PRUEBAS ADICIONALES A LAS MEZCLAS ASFALTICAS.doc (D9972426) https://repository.ucatolica.edu.co/bitstream/10983/23911/1/TESIS.pdf https://repository.eafit.edu.co/bitstream/handle/10784/1277/ MenaAbadia_WilmerBernardo_2013.pdf;sequence=2 https://core.ac.uk/download/pdf/76491972.pdf https://1library.co/document/qvldklgy-evaluacion-pavimentos-flexibles-metodo-avenidaleopoldo-carrera-libertad.html https://repositorio.usm.cl/bitstream/handle/11673/47822/3560900259619UTFSM.pdf? sequence=1&isAllowed=y https://repository.ucatolica.edu.co/bitstream/10983/24071/1/Tesis%20An%C3%A1lisis% 20Mecanicista.pdf

Instances where selected sources appear:

34

AGRADECIMIENTO

Agradezco a Dios por nunca dejarme caer a lo largo de mi carrera universitaria, por haberme dado las fuerzas necesarias en los momentos más difíciles y siempre guiarme para la correcta toma de decisiones.

Mis padres, Gipssy Canales y Willian Naranjo por siempre apoyarme durante mi carrera, les agradezco por confiar en mí y por todo el esfuerzo realizado para poder cumplir uno de mis grandes sueños el cual es ser ingeniero.

A mis hermanos, porque son parte fundamental de mí día a día, sencillamente su presencia me motiva a superarme cada día más y ser un gran ejemplo como hermano mayor.

Mi abuela Mariana Mosquera por siempre estar en los momentos difíciles y brindarme su ayuda en momentos de crisis para poder lograr mis metas.

Mis amigos y profesores de universidad por ser parte importante del proceso de formación y por toda la ayuda brindada sin interés alguno, agradezco la presencia de cada uno y por las buenas relaciones formadas durante la carrera.

Ultimo pero no menos importante, agradezco al Ing. Rolando Vila Romaní, Phd, porque a pesar de las circunstancias confió en mí y me brindó la oportunidad de aprender de su experiencia y conocimientos para terminar con éxitos este trabajo de titulación.

Walter Naranjo Canales

VI

DEDICATORIA

Dedico este trabajo de tesis a mi familia, principalmente a mis padres porque sin ellos esto no fuera posible. Su esfuerzo, sacrificio y amor brindado a diario lograron que se llegue a este punto, donde estoy cumpliendo una de mis metas. A mis hermanos, los cuales sé que siempre contaré con ellos, con su amor siendo parte de mis días y siendo para mí una gran motivación de superación personal.

Al resto de mi familia que de una u otra manera fueron parte motivacional de mi desarrollo académico.

Una dedicatoria especial a mi ángel del cielo, mi abuelo Víctor Naranjo, el cual me cuida y me protege todos los días, sé que estaría orgulloso de este logro y por eso se lo dedico.

Walter Naranjo Canales

UNIVERSIDAD CATÓLICA

DE SANTIAGO DE GUAYAQUIL

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

TRIBUNAL DE SUSTENTACIÓN

f._____

Ing. Stefany Alcívar Bastidas, M.Sc.

DIRECTORA DE CARRERA

f._____

Ing. Nancy Varela Terreros, M.Sc.

COORDINADOR DEL ÁREA O DOCENTE DE LA CARRERA

f._____

PhD. Federico Von Buchwald de Janon

OPONENTE

CAPITULO 1
1. INTRODUCCIÓN
1.1. Antecedentes
1.2. Objetivos
1.2.1. Objetivo general
1.2.2. Objetivos específicos
1.3. Metodología5
CAPITULO 2
2. MARCO TEÓRICO
2.1. Generalidades
2.2. Tipos de agrietamiento6
2.3. Mecanismo general del agrietamiento9
2.4. Agrietamiento por fatiga tipo top-down11
2.5. Precisiones sobre las causas del deterioro por TDC14
2.5.1. Segregación de los Áridos14
2.5.2. Envejecimiento del asfalto
2.5.3. Tráfico vehicular
2.6. Identificación y evaluación del deterioro TDC17
2.6.1. Extracción de núcleos
2.6.2. Equipos que emplean técnica de video-láser
2.6.3. Diagnóstico por ultrasonido

ÍNDICE

2.7. Predicción del agrietamiento por fatiga según AASHTO 2008 (MEPE) G) 22
CAPITULO 3	26
3. TRAMOS DE VÍAS SELECCIONADOS IMPACTADOS POI	R EL
AGRIETAMIENTO TOP-DOWN	
3.1. Introducción	
3.2. Criterios de selección	
3.3. Vías seleccionadas	
3.4. Análisis de los deterioros por TDC de los tramos seleccionados	
3.4.1. Vía "Durán – Boliche". Calzada Sur	
3.4.2. Vía "Durán - Boliche". Calzada Norte	35
3.4.3. Vía "Km26 – Puerto Inca"	41
3.4.4. Vía "Durán – Jujan"	46
3.4.5. Vía "Guayaquil – El Empalme"	50
3.5. Análisis comparativo	56
CAPITULO 4	59
4. ANÁLISIS MECANICISTA DE PAVIMENTOS	59
4.1. Metodología	59
4.2. Análisis de la temperatura en la región costa del Ecuador	59
4.3. Módulo dinámico de la mezcla asfáltica	60
4.4. Coeficiente de Poisson	67
4.5. Análisis mecanicista de los pavimentos estudiados	67
4.5.1. Introducción	67

4.5.2.	Vía "Durán – Boliche". Calzada Sur6	<u>5</u> 9
4.5.3.	Vía "Durán - Boliche". Calzada Norte7	0
4.5.4.	Vía "Km26 – Puerto Inca" 7	71
4.5.5.	Vía "Durán – Jujan"7	13
4.5.6.	Vía "Guayaquil – El Empalme"7	14
4.5.7.	Deformaciones unitarias máximas obtenidas en las vías	7
4.5.8.	Repeticiones permisibles para el fallo por TDC de acuerdo a AASHT	0
2008	78	
CAPITULO	95	30
5. CONC	LUSIONES Y RECOMENDACIONES	30
5.1. Co	nclusiones	30
5.2. Re	comendaciones	31
CAPITULO	9 6 8	33
6. REFER	RENCIA	33

ÍNDICE DE TABLAS

Tabla 3.1. Variación de los deterioros por TDC en la vía "Durán – Boliche"29
Tabla 3.2. Variación de los ESAL en la vía "Durán – Boliche" 31
Tabla 3.3. Estructura inicial en la vía "Durán – Boliche" 31
Tabla 3.4. Áreas deterioradas respecto al tiempo en la vía "Durán – Boliche" 32
Tabla 3.5. Áreas deterioradas respecto a los ESAL en la vía "Durán – Boliche" 33
Tabla 3.6. Variación de los deterioros por TDC en la vía "Durán - Boliche"35
Tabla 3.7. Variación de los ESAL en la vía "Durán - Boliche" Calzada Norte 38
Tabla 3.8. Estructura inicial en vía "Durán - Boliche" Calzada Norte
Tabla 3.9. Incremento de los deterioros con el tiempo en la vía "Durán - Boliche"
Calzada Norte
Tabla 3.10. Incremento de daños (%) con los ESAL en la vía "Durán - Boliche"
Calzada Norte
Tabla 3.11. Variación de los deterioros por TDC en la vía "Km26 - Puerto Inca" 41
Tabla 3.12. Variación de los ESAL en la vía "Km 26 - Puerto Inca"
Tabla 3.13. Estructura en vía "Km 26 - Puerto Inca"43
Tabla 3.14. Incremento de los deterioros con el tiempo en vía "Km 26 - Puerto Inca"
Tabla 3.15. Incremento de daños (%) con los ESAL en la vía "Km 26 - Puerto Inca"
Tabla 3.16. Variación de los deterioros por TDC en la vía "Durán – Jujan"
Tabla 3.17. Variación de los ESAL en la vía "Durán – Jujan"47
Tabla 3.18. Estructura inicial en vía "Durán – Jujan"
Tabla 3.19. Incremento de los deterioros con el tiempo en vía "Durán – Jujan" 48
Tabla 3.20. Incremento de daño (%) con los ESAL en la vía "Duran – Jujan" 49

Tabla 3.21. Variación de los deterioros por TDC en la vía "Guayaquil - El
<i>Empalme</i> "50
Tabla 3.22. Variación de los ESAL en la vía "Guayaquil - El Empalme"
Tabla 3.23. Estructura inicial en vía "Guayaquil - El Empalme" 54
Tabla 3.24. Incremento de los deterioros con el tiempo en la vía "Guayaquil - El
<i>Empalme</i> "
Tabla 3.25. Incremento de daños (%) con los ESAL en la vía "Guayaquil - El
<i>Empalme</i> "
Tabla 4.1. Resultados de la temperatura media ponderada en función del tráfico y
profundidad de medición60
Tabla 4.2. Variación de la frecuencia con la profundidad para una velocidad de 70
<i>km/h</i>
Tabla 4.3. Variación de la viscosidad con la temperatura en el residuo RTFOT 64
Tabla 4.4. Viscosidades del residuo para las temperaturas de estudio
Tabla 4.5. Datos utilizados en la ecuación de predicción de Witczack 66
Tabla 4.6. Módulos dinámicos según la ecuación de predicción de Witczack 66
Tabla 4.7. Coeficiente de Poisson según la temperatura
Tabla 4.8. Pavimento existente en vía "Durán - Boliche" Calzada Sur
Tabla 4.9. Resumen de resultados. "Durán - Boliche" Calzada Sur km 11,3 a 16,1
(2002 a 2009)
Tabla 4.10. Pavimento existente en vía "Durán - Boliche" Calzada Norte
Tabla 4.11. Resumen de resultados. "Durán - Boliche" C. Norte km 6,8 a 11,3
(2002 a 2009) y km 11,3 a 16,1 (2002 a 2007)
Tabla 4.12. Pavimento existente en vía "Km 26 – Puerto Inca"

Tabla 4.13. Resumen de resultados. "Km 26 – Puerto Inca" km 5,6 a 10,9 (2005 a
2010)
Tabla 4.14. Resumen de resultados. "Km 26 – Puerto Inca" km 5,6 a 10,9 (2005 a
2010)
Tabla 4.15. Pavimento existente en vía "Durán – Jujan"73
Tabla 4.16. <i>Resumen de resultados. "Durán – Jujan" km 31,5 a 34,1 (2000 a 2006)</i>
Tabla 4.17. Pavimento existente en vía "Guayaquil – El Empalme"
Tabla 4.18. Resumen de resultados. "Guayaquil – El Empalme" km 60,0 a 62,2 y
<i>km</i> 69,2 <i>a</i> 71,0 (2000 <i>a</i> 2007)
Tabla 4.19. Resumen de resultados. "Guayaquil – El Empalme" km 62,2 a 69,2
(2000 a 2007)
Tabla 4.20. Deformaciones unitarias máximas obtenidas en el WINJULEA
Tabla 4.21. Repeticiones permisibles calculadas 78

ÍNDICE DE FIGURAS

<i>Figura 1.1.</i> Deformaciones y esfuerzos en la capa asfáltica bajo una carga2
<i>Figura 2.1</i> . Agrietamiento por fatiga tipo piel de cocodrilo7
<i>Figura 2.2.</i> Deterioro por TPD en fase de desarrollo
Figura 2.3. Mecanismos de agrietamiento por etapas. (a) Etapa de iniciación, (b)
etapa de propagación, (c-f) etapa de fractura o fallo10
Figura 2.4. Modos de propagación de fisuras de materiales11
Figura 2.5. Representación de la estructuración homogénea de los agregados en
mezcla asfáltica
Figura 2.6. Segregación de los agregados en mezcla asfáltica14
Figura 2.7. Desarrollo de fisura Top-Down en pavimento con asfalto envejecido 15
Figura 2.8. Inicio de la fisuración descendente debido a flexión negativa a los lados
de la rodada
Figura 2.9. Detalle de las tensiones producidas por las huellas de los neumáticos 17
Figura 2.10. Núcleo extraído con grieta del tipo Top-Down
Figura 2.11. Esquema de funcionamiento de los equipos de auscultación superficial
de pavimentos tipo Video-láser
Figura 2.12. Representación didáctica de la utilización de ondas para determinar
profundidad de grietas Top-Down21
Figura 2.13. Representación didáctica de recorrido de la onda ante una grieta
ascendente
Figura 3.1. Agrietamientos tipo top-down presentes en la vía "Durán-Boliche" 26
Figura 3.2. Trabajos de fresado en sectores de una vía
Figura 3.3. Variación de los deterioros con el tiempo en la vía "Durán – Boliche"
Calzada Sur

Figura 3.4. Variación de los deterioros con los ESAL. Vía "Durán-Boliche" Calzada
Sur
Figura 3.5. Variación de los deterioros con el tiempo en la vía "Durán - Boliche"
Calzada Norte
Figura 3.6. Variación de los deterioros con los ESAL en la vía "Durán - Boliche"
Calzada Norte
Figura 3.7. Variación de los deterioros con el tiempo en la vía "Km 26 - Puerto Inca"
Figura 3.8. Variación de los deterioros con los ESAL en la vía "Km 26 - Puerto
Inca"
Figura 3.9. Variación de los deterioros con el tiempo en la vía "Durán – Jujan" 48
Figura 3.10. Variación de los deterioros con los ESAL en la vía "Duran – Jujan" 49
Figura 3.11. Variación de los deterioros con el tiempo en la vía "Guayaquil - El
Empalme"55
Figura 3.12. Variación de los deterioros con los ESAL en la vía "Guayaquil - El
Empalme"56
Figura 3.13. Variación de los deterioros con los ESAL en las vías mencionadas 57
Figura 3.14. Curva de ajuste de ESAL vs (%) agrietamiento de las vías mencionada
Figura 4.1. Gráfico de la variación de la viscosidad con la temperatura en el residuo
RTFOT
Figura 4.2. Esquema de parte de la ubicación de los puntos de control
<i>Figura 4.3</i> . Ejemplo de entrada de datos y respuesta obtenida con el WINJULEA 69

RESUMEN

En los últimos años a nivel internacional se le está prestando atención a un tipo de agrietamiento en los pavimentos asfálticos asociado a las cargas y que de hecho son generados por un mecanismo de fatiga que producen grietas que se desarrollan de la superficie hacia abajo, es decir, el proceso inverso a la fatiga convencional tipo piel de cocodrilo. Precisamente, el objetivo de este trabajo es estudiar dicho fenómeno del agrietamiento por fatiga tipo "top-down" mediante el análisis de información actualizada y estudios de casos particulares de pavimentos en vías principales, para hacer valoraciones sobre el efecto de los factores involucrados y métodos de predicción. Para cumplir dicho objetivo se analizaron los resultados de evaluaciones de daños en carreteras concesionadas en la provincia Guayas del Ecuador, entre 2000 y 2010, realizadas mediante el sistema PAVER.

En la investigación, inicialmente se realiza una revisión del contexto en el que se desarrolla este tipo de fallo, presentando los principales agentes causantes: segregación de los agregados, el envejecimiento del asfalto, el tránsito y la incidencia de las llantas propiamente; además de una revisión de información actualizada sobre investigaciones recientes.Como resultado principal se han encontrado relaciones entre las cargas actuantes, a través del número de ejes simples equivalentes de 82 kN con los porcentajes de área deterioradas por fatiga top-down en las diferentes vías. La línea de tendencia general obtenida presenta un coeficiente de determinación R² del 74.7%. Por otra parte, la comparación de estos resultados con las repeticiones permisibles para este tipo de fallo obtenidas con la ecuación de predicción de AASHTO 2008, nos indica que no existen coincidencias entre ambas.

Palabras claves: mezclas asfálticas, deterioros, fatiga top down, TDC, módulo dinámico

ABSTRACT

In recent years at an international level attention has been paid to a type of cracking in asphalt pavements associated with loads and that in fact are generated by a fatigue mechanism that produces cracks that develop from the surface downwards, that is, the reverse process of conventional crocodile skin type fatigue. Precisely the objective of this work is to study said "top-down" type fatigue cracking phenomenon through the analysis of updated information and studies of particular cases of pavements on main roads, to make evaluations about the effect of the factors involved and methods prediction. To achieve this objective, the results of damage assessments on concessioned highways in the Guayas province of Ecuador, between 2000 and 2010, carried out using the PAVER system were analyzed.

In the investigation, initially a review of the context in which this type of failure is developed is carried out, presenting the main causative agents: segregation of the aggregates, the aging of the asphalt, the traffic and the incidence of the tires themselves; in addition to a review of updated information on recent research. As a main result, relationships between the acting loads have been found, through the number of equivalent simple axles of 82 kN with the percentages of area deteriorated by top-down fatigue in the different tracks. The general trend line obtained presents a coefficient of determination R^2 of 74.7%. On the other hand, the comparison of these results with the permissible repetitions for this type of failure obtained with the prediction equation of AASHTO 2008, indicates that there are no coincidences between the two.

Keywords: asphalt mixes, deterioration, top down fatigue, TDC, dynamic modulus

CAPITULO 1

1. INTRODUCCIÓN

1.1. Antecedentes

El origen de las grietas en las capas asfálticas superficiales de carreteras se las ha considerado principalmente provenientes del efecto de las cargas vehiculares actuantes, lo que provoca la fatiga de dichas capas. Sin embargo, también pueden vincularse a otros problemas no relacionados con las cargas, como los cambios de temperatura diarios y la calidad del asfalto, especialmente su envejecimiento. Estos últimos factores provocan agrietamientos en bloques e impactan en la durabilidad de las mezclas.

En el caso del agrietamiento por fatiga, tradicionalmente este se ha asociado al surgimiento de grietas en la parte inferior de la capa asfáltica como producto de las deformaciones por tracción debido a las cargas, que van propagándose hacia arriba, provocando la destrucción del pavimento con el tiempo, ver Figura 1.1.Este tipo de mecanismo de falla es uno de los criterios usuales en la mayoría de los métodos de diseño y análisis de pavimentos flexibles.

Figura 1.1. Deformaciones y esfuerzos en la capa asfáltica bajo una carga

Sin embargo, en los últimos años se han realizado trabajos de investigación donde se muestra que la propagación de las grietas por fatiga se puede dar también en una dirección diferente. Estos trabajos nos han llevado al conocimiento y a la formación conceptual de una problemática conocida como agrietamiento por fatiga de la superficie hacia abajo, agrietamiento descendente o en inglés "top – down cracking (TDC)". Es decir, grietas que comienzan en la superficie de la capa de rodadura y progresivamente van afectando a las capas inferiores hasta una profundidad que varía en un rango entre 3 y 7 cm.

Al desarrollarse este tipo de investigación en lugares como Estados Unidos y Europa, existe una demora significativa para considerarse en nuestros procesos de diseño establecidos por el MTOP (AASHTO, 1993), donde no se toma en consideración este tipo de falla.

Como sitios de estudio se seleccionaron cinco de las carreteras principales existentes en la provincia del Guayas, carreteras que conectan a la ciudad de Guayaquil con diferentes cantones de la provincia. La información veraz sobre los tramos de vías seleccionados se remonta a la primera década del presente siglo y corresponden a los controles realizados en su momento por el Ing. Rolando Vila, tutor de este trabajo, como asesor técnico en las empresas concesionarias viales CONCEGUA y CONORTE, las cuales administran 600 km de carreteras principales en la provincia Guayas. Dichos controles comprendieron evaluaciones periódicas de deterioros, estudios geotécnicos, información del tráfico y diseños de rehabilitaciones.

En general en estas vías, con espesores acumulados de capas asfálticas entre 16 y 25 cm, se presentaron deterioros por TPD a los pocos años de la rehabilitación realizada como parte del inicio del cambio de administración (a concesión), entre los años 1999 y 2001. Precisamente a partir de esa primera intervención es que se enfoca este

estudio, que culmina en el momento en que se realizaron con urgencia otras rehabilitaciones.

Este tipo de fallo TPD implicó que en las intervenciones posteriores realizadas a las capas asfálticas agrietadas, se podían ejecutar obras de bacheo fresando inicialmente 5 o 7 cm desde la superficie para remediar este daño. Los espesores o capas inferiores no presentaban problemas.

La mayor parte de la red vial principal del Ecuador está constituida por pavimentos con capas asfálticas gruesas dada la gran cantidad de rehabilitaciones y refuerzos a los que han sido sometidos. En este tipo de estructura son usuales los deterioros producto de la fatiga, pero no la clásica con grietas que crecen de abajo hacia arriba y que responden a capas delgadas o pavimentos débiles, sino a grietas inicialmente longitudinales y siempre de arriba hacia abajo. Este tipo de fallas TDC se comenzó a considerar en los procedimientos internacionales de diseño a partir del año 2002 (NCHRP, 2002)y ha sido muy poco estudiada y nunca considerada en los diseños en Ecuador.

1.2. Objetivos

1.2.1. Objetivo general

Estudiar el fenómeno del agrietamiento por fatiga tipo "top-down" en pavimentos asfálticos mediante el análisis de información actualizada y estudios de casos particulares de pavimentos en vías principales de la provincia Guayas, para hacer valoraciones sobre el efecto de los factores involucrados y métodos de predicción.

1.2.2. Objetivos específicos

• Recopilar y analizar información actualizada sobre la fatiga top-down

- Estudiar el comportamiento de este fenómeno en 5 vías concesionadas de la provincia Guayas, donde se poseen datos del comportamiento de estos deterioros con el tiempo y con tráfico conocido.
- Analizar los resultados obtenidos para hacer valoraciones sobre los factores involucrados y métodos de predicción.

1.3. Metodología

Se inicia con la revisión de información, en especial los criterios de las normativas AASHTO 2002 y 2008, para analizar la forma en que se consideran estos tipos de fallas TDC, causas, efectos, predicción y control.

Luego se revisó la información técnica a nuestro alcance y se seleccionaron cinco tramos de vías, considerando que tuviesen varias evaluaciones de daños realizadas que permitieran determinar patrones de deterioros TDC, además de información geotécnica y de tráfico. Por esta razón, también en lo posible se escogieron tramos cercanos a estaciones de peaje.

El correcto ordenamiento y tratamiento de la información histórica obtenida permitirá el análisis del comportamiento de nuestras vías y su posible comparación con los resultados de criterios de predicción encontrados en la bibliografía revisada.

CAPITULO 2

2. MARCO TEÓRICO

2.1. Generalidades

Los deterioros por agrietamientos top-down (TDC) en los pavimentos asfálticos han atraído una mayor atención en los últimos años. Una gran cantidad de información se ha generado como resultado de estudios internacionales emprendidos para comprender el mecanismo del TDC y para proponer medidas para prevenir, mitigar o rehabilitar el pavimento ante este tipo de daño.

No obstante, el campo de los pavimentos asfálticos aún carece de una buena comprensión sobre el TDC (Wen & Bhusal, 2015). Específicamente, ningún acuerdo definitivo ha sido alcanzado para explicar sus causas o para desarrollar un modelo exitoso para predecir su ocurrencia y crecimiento. Esta falta de una estrategia definitiva para mitigar el TDC probablemente está dada por el hecho de reportes sobre problemas de deterioros por TDC se han informado en diferentes zonas climáticas, en pavimentos con capas asfálticas de distintos espesores, ante bases rígidas o no, en forma de fisuras longitudinales o interconectadas, ubicadas dentro o fuera del paso de las llantas.

2.2. Tipos de agrietamiento

Como se ha mencionado, dentro de los deterioros de fisuración por fatiga se pueden identificar actualmente dos mecanismos: agrietamiento ascendente o bottom-up cracking (BUC) y agrietamiento descendente o top-down cracking (TDC). En general, estas abreviaturas del idioma inglés son muy frecuentes Las grietas ascendentes correspondientes a la fatiga "convencional" se generan por una serie de grietas interconectadas cuyo origen es la falla por fatiga de la capa de rodadura asfáltica bajo acción repetida de las cargas de tránsito. El agrietamiento se inicia en el fondo de la capa asfáltica donde los esfuerzos y deformaciones unitarias de tracción son mayores bajo la carga de una rueda. Inicialmente, las grietas se propagan a la superficie como una serie de grietas longitudinales paralelas. Después de repetidas cargas de tránsito, las grietas se conectan formando polígonos con ángulos agudos que desarrollan un patrón que se asemeja a una malla de gallinero o a la piel de cocodrilo (Valdés, Pérez, & Calabi, 2012). Esta situación de aprecia en la Figura 2.1.

Figura 2.1. Agrietamiento por fatiga tipo piel de cocodrilo. Tomado de materiales de clases de la asignatura Pavimentos. Ing. Rolando Vila. UCSG. 2019.

Este tipo de fisura se puede presentar en diferentes niveles de severidad.

- Nivel bajo cuando las fisuras están apenas interconectadas entre sí, y no existe expulsión de finos desde las capas inferiores.
- Nivel medio o moderado se presenta con un mayor número de grietas interconectadas y sin presencia de expulsión de finos desde las capas inferiores.

 Nivel alto grado de severidad se puede observar cuando las grietas están completamente interconectadas, presentando expulsión de finos desde las capas inferiores, y además existen secciones de pavimento desprendidos que se mueven con el paso del tránsito.

Según NCHRP (2002), alguna de las razones que pueden generar estas falla son:

- Capas asfálticas relativamente delgadas o débiles para las repeticiones de las cargas por rueda.
- Cargas por rueda o presiones de inflado muy elevadas.
- Zonas blandas en la capa de base de agregados, sub-base o subrasante.
- Capas débiles de base o sub-base granulares, debido a una inadecuada compactación, el incremento del contenido de humedad o el crecimiento del nivel del manto freático.

Las grietas descendentes o TDC son una forma de fatiga relacionada con la carga de la rueda, que se produce en la trayectoria de la rueda o zonas cercanas, las que generan grietas predominantemente paralelas al eje de la vía, ver Figura 2.2.A lo largo de los bordes de estas grietas pueden ocurrir interconexiones con otras grietas que pueden terminar formando un patrón muy parecido a la llamada piel de cocodrilo.

Figura 2.2.Deterioro por TPD en fase de desarrollo. Tomado de materiales de clase de la asignatura Pavimentos. Ing. Rolando Vila. UCSG. 2019.

De acuerdo a NCHRP (2002) los mecanismos principales que causan este tipo de griertas son:

- La carga por rueda provoca esfuerzos y deformaciones por tracción que ocurren en la superficie y que causan que el agrietamiento se inicie en esa zona y se propague hacia abajo debido a las tracciones.
- Los esfuerzos cortantes que ocurren en la superficie de la capa asfáltica causadas por las llantas radiales con alta presión de contacto cerca de los bordes. Esto indica que las grietas se inician y propagan tanto por cortante como por tracción.
- El severo envejecimiento de la mezcla asfáltica cerca de la superficie provoca en ella una alta rigidez, que cuando se combina con una elevada presión de contacto de las llantas, causa el inicio de las grietas y su propagación.

2.3. Mecanismo general del agrietamiento

En el artículo investigativo de Valdés et al. (2012) se explicó la formación de grietas por fatiga en mezclas asfálticas la cual se da en tres etapas.

La primera etapa, conocida como iniciación, es donde se producen los primeros cambios microestructurales a consecuencia de los factores que está sometido el material, dando cabida a la formación de microfisuras. La segunda etapa es de propagación, donde se generan macrofisuras producto de la unión de las microfisuras ya existentes. Esta unión de microfisuras se debe a que se generan mecanismos de trabazón en la matriz de los agregados, sumándole las discontinuidades propias del material, como dislocaciones existentes, los poros y vacíos presentes, que producen senderos o caminos de fisuración aumentando así la longitud de la grieta o fisura, que terminan (tercera etapa) con la fractura o fallo total del material, cuando se separan íntegramente las dos caras del material presente, ver Figura 2.3. (p. 33)

Figura 2.3.Mecanismos de agrietamiento por etapas. (a) Etapa de iniciación, (b) etapa de propagación, (c-f) etapa de fractura o fallo. Tomado del libro "Fracture Mechanics of Concrete, Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials" por S. Shah, S. Shwartz& Ch.Ouyang,1995, New York, USA: Wiley-Interscience Publication.

Una forma de clasificación de las formas de fisuración de un material se describe a continuación Valdés et al. (2012), la que permite estudiar la concentración de tensiones en la cabeza de una fisura a través de 3 modos, ver Figura 2.4.

- Modo I o modo de apertura (tracción normal), en este modo las caras de la fisura se separan de forma casi paralela entre sí.
- Modo II o modo de corte (corte normal), las caras se deslizan una sobre otra.
- Modo III o modo de rasgado (corte paralelo), las caras de la fisura se deslizan lateralmente una respecto a la otra. (p.34)

Figura 2.4.Modos de propagación de fisuras de materiales. Tomada del libro "Fractura Mecánica: un enfoque Global", por Oller S., 2001, Barcelona, Esapaña: Ediciones Centro Internacional de Métodos Numéricos en Ingeniería.

De los tres modos mencionados el Modo I es el que más representa el deterioro que se produce en el pavimento cuando una rueda cargada pasa sobre una fisura transversal o longitudinal (A. Braham, Pterson P., & Buttlar W., 2009).

2.4. Agrietamiento por fatiga tipo top-down

La fatiga por BUC de los pavimentos asfálticos es uno de los tipos de destrucciones tradicionales en los pavimentos, que puede ser mitigada según los expertos, con una estructura de pavimento fuerte. Sin embargo, de acuerdo a recientes estudios, la fatiga por TDC se reconoce ahora como un modo de destrucción prominente, donde las grietas se inician en la superficie o a una profundidad cercana a esta y entonces se propaga hacia abajo, mediante un mecanismo de propagación que no puede ser explicado enteramente por los criterios convencionales usados en los análisis para BUC (Pellinen, Rowe, & Biswas, 2004), (Roque, et al., 2010). Fallos por TDC son también ampliamente identificados en pavimentos bien construidos, especialmente aquellos con capas asfálticas gruesas.

Se han realizado reportes de TDC observados en diferentes estados de los Estados Unidos como Florida, Colorado, Alabama y Oregón, y varios países en diferentes continentes (Gerritsen, Molenaar, Pronk, Van Der Heide, & Van Gurp, 1987), (Bemsalen, 2000), (Wen & Bhusal, 2015), (Rahman , Podolsky, Williams, & Scholz, 2017), (Gu, Luo, West, Taylor, & Moore, 2018). El tiempo de inicio asociado a las TDC varía significativamente de un lugar a otro, el cual puede ser menor que 2 años o mayor que 10 años después de la construcción.

El mecanismo de inicio de las TDC está afectado por numerosos factores y potenciales interacciones, incluyendo propiedades intrínsecas y de fractura de las mezclas asfálticas, estructura del pavimento, niveles de tráfico y efecto de las temperaturas (Baek, et al., 2012), (Dinegdae, Onifade, Jelagin, & Birgisson, 2015). El envejecimiento de campo, incluyendo el envejecimiento no uniforme y el envejecimiento a largo plazo, induce la mayor fragilidad superficial de las capas asfálticas y por tanto tiende a incrementar el desarrollo de las TDC, lo cual puede ser determinado experimentalmente estudiando núcleos barrenados en el campo (Ling, Luo, Fan, & Robert , 2017).

Por otra parte, se ha demostrado que las mezclas asfálticas con altos contenidos de huecos con aire sufren de TDC de una forma más seria que las mezclas más cerradas.

Además, permite que más aire se difunda en la capa asfáltica con mayor contenido de huecos, reaccionando con el ligante asfáltico e incrementando la fragilidad de la mezcla, especialmente en la parte superficial (Glover, et al., 2014) Por otra parte, un mayor contenido de asfalto produce una mezcla más compatible para resistir el daño por fatiga tanto por las cargas como térmicas (Lytton, Uzan, Fernando, Roque, Hiltunes, & Stoffels, 1993). Mezclas muy rígidas son usualmente más propensa a agrietarse que otras menos rígidas, debido a su baja flexibilidad (Nobakht, Sakhaeifar, & Newcomb, 2017), (Zhou, Im, Sun, & Scullion, 2017). También se ha reportado que la graduación del agregado grueso puede acortar el inicio en el tiempo del TDC debido a la interferencia en el reacomodo de la mezcla bajo las cargas de compresión (Freitas, Pereira, Picado-Santos, & Papagiannakis, 2005). Adicionalmente, el espesor de las capas asfálticas es uno de los factores estructurales dominantes en el inicio del TDC (Shen, Shang, Shen, & Huang, 2016). Las cargas de tráfico, incluyendo el espectro de carga, el volumen de tráfico y la magnitud de las cargas son identificadas también como críticas para el inicio del TDC.

Entre los resultados del estudio se observo que:

Este tipo de deterioro TDC no afecta significativamente a la capacidad estructural del pavimento asfáltico durante sus primeras etapas. Sin embargo, a lo largo del tiempo y con el curso constante de tráfico las grietas secundarias pueden aumentar e interconectarse, produciendo la infiltración del agua en la capa y permitiendo generar daño por humedad. Las superficies con un inicio de agrietamiento top-down sometidas a camiones sobrecargados, si no se mitigan de manera temprana afectaran la integridad estructural del pavimento. (Emery, 2007)

2.5. Precisiones sobre las causas del deterioro por TDC

2.5.1. Segregación de los Áridos

La granulometría presente en la mezcla asfáltica puede tomar una posición, en el proceso de colocación de la misma, donde los agregados gruesos se agrupan en la parte superficial y así tener poco agregado fino en las zonas de relleno, por eso tiende a ser débil y propensa a agrietamiento, ver Figuras 2.5. y 2.6. Hay muchos métodos para evitar y combatir este tipo de problemas, como el de usar asfaltos más viscosos que permitan trabar mejor las partículas minerales e impidan que se separen los agregados de mayor tamaño.

Figura 2.5.Representación de la estructuración homogénea de los agregados en mezcla asfáltica. Tomado de "Sobre las enfermedades de los pavimentos de las carreteras" por Del Val Melús & Medina, 2010, Madrid, España: Universidad Politécnica de Madrid

*Figura 2.6.*Segregación de los agregados en mezcla asfáltica. Tomado de "Sobre las enfermedades de los pavimentos de las carreteras" por Del Val Melús & Medina, 2010, Madrid, España: Universidad Politécnica de Madrid

2.5.2. Envejecimiento del asfalto

El asfalto es de composición orgánica y una vez colocado en la obra como parte de la mezcla asfáltica sus agentes de degradación más importantes serán la radiación ultravioleta del sol, el agua proveniente de la lluvia y la presión generada por los neumáticos al contacto por el tráfico. El envejecimiento no se puede evitar, está dentro del proceso de vida del asfalto, pero se lo puede ralentizar empleando asfaltos que contenga polímeros de modo que con estas adiciones conserve sus propiedades originales durante años. (Del Val Melús & Medina, 2010)

El severo envejecimiento de la mezcla asfáltica cerca de la superficie provoca en ella una alta rigidez, que cuando se combina con una elevada presión de contacto de las llantas, causa el inicio de las grietas y su propagación descendente, ver Figura 2.7.

Figura 2.7.Desarrollo de fisura Top-Down en pavimento con asfalto envejecido. Tomado de "Sobre las enfermedades de los pavimentos de las carreteras" por Del Val Melús & Medina, 2010, Madrid, España: Universidad Politécnica de Madrid

2.5.3. Tráfico vehicular

El cálculo del tráfico de diseño es uno de los principales factores para determinar o predecir el daño que sufrirá un pavimento en un período de tiempo dado. La caracterización del tráfico es bastante compleja, ya que en ella interactúan mucho factores como la variabilidad y periodicidad de los vehículos, sus cargas por eje, las interacciones vehículo-pavimento y las velocidades de circulación, los cuales producen fenómenos con demandas adicionales a las propias cargas estáticas de los vehículos (Valdés et al., 2012).

Un mecanismo está relacionado con la tracción superficial inducida por la flexión de la capa asfáltica lejos del neumático (es decir, flexión negativa a los lados de la rodada), que gobierna el inicio de grietas en capas de mezclas asfálticas de espesor medio. Ver Figura 2.8.

Figura 2.8.Inicio de la fisuración descendente debido a flexión negativa a los lados de la rodada.Tomado de "Construction quality, temperature and rutting effect on top-down cracking initiation" por Freitas et al., 2005, Braga, Portugal: Departamento de Ingeniería, Universidad de Minho.

El otro está asociado con la presión de contacto neumático pavimento, que no es homogénea, sino que hay unos gradientes de presión muy fuertes en los límites de las acanaladuras y en los bordes externos de la banda de rodamiento, lo que genera tensiones tangenciales, iniciando fisuras que después progresarán (Proyecto Fenix, 2008). Ver Figura 2.9.

Este mecanismo pudiera estar más asociado al TDC en capas más gruesas de mezcla asfáltica. Ambos daños se vuelven más críticos a medida que el envejecimiento progresa.

Figura 2.9. Detalle de las tensiones producidas por las huellas de los neumáticos. Tomado de
"Determinig the causes of top-down cracks in bituminous Pavements" por Baladi, G., Schorsch, M.,
& Svasdisant, T., 2003, East Lasing, Michigan: Michigan Departament of Transportation.

2.6. Identificación y evaluación del deterioro TDC

Los deterioros por TDC pueden tener distintas formas. Las principales son las grietas longitudinales, algunas transversales y otras en forma de red, lo que no permiten por simple observación visual determinar si obedecen o no a deterioros TDC o BUC. Para identificar las fisuras por TDC se tienen algunas herramientas, como son la extracción de núcleos y ensayos no destructivos.

2.6.1. Extracción de núcleos

Una de las maneras convencionales de averiguar y descubrir qué tipo de agrietamiento por fatiga sufre un pavimento asfaltico es la toma de testigos, su procedimiento es la de extraer testigos o núcleos de sección circular de la zona que presenta agrietamiento. Alguno de los testigos debe de situarse justamente en la fisura a chequear, de modo que se pueda determinar, una vez extraído el núcleo, la profundidad de la grieta, ver Figura 2.10. No obstante se deberá de tomar testigos alrededor de la fisura para determinar las propiedades de la mezcla asfáltica de la zona dañada. Por último, es necesario extraer un último testigo situado en una zona no dañada para así realizar una comparación de las propiedades de los dos dichos testigos.

Figura 2.10.Núcleo extraído con grieta del tipo Top-Down. Tomado de materiales de clases de la asignatura Pavimentos. Ing. Rolando Vila. UCSG. 2019.
La toma de testigos incluye, lógicamente, el relleno del hueco en el pavimento con material adecuado. En cualquier caso, con los testigos tomados se realizarán al menos los siguientes trabajos de laboratorio mostrados en (Proyecto Fenix, 2008):

- Características volumétricas de la mezcla: gravedad específica bulk, Rice y porcentaje de vacíos en mezcla.
- Granulometría
- Contenido de ligante
- Algún tipo de prueba de resistencia siempre que sea posible.

En la tesis doctoral de García (2011) se afirman que:

Los principales inconvenientes de este método de investigacion son su carácter destructivo y la necesidad de cerrar parcial o totalmente la vía al tráfico, lo cual se traduce en una pérdida de tiempo a conductores entre otras. De la experiencia en las campañas efectuadas, los núcleos testigos con avanzado estado de fisuracion pueden resultar completamente fracturados en la extracción y por ellos resultara muy dificil la determinacion precisa de la profundidad de la grieta. Ademas, la infomacion que proporcionan tiene solo carácter puntual, restringida a los puntos en los que se ha efectuado la testificacion. (p. 11)

2.6.2. Equipos que emplean técnica de video-láser

El aspecto geometría y localización de los deterioros de carácter superficial pueden inspeccionarse mediante técnicas basadas en la obtención de imágenes y, si se combinan con el empleo de láser, incluso hasta algunas características como la abertura y profundidad visible de las grietas. Ver Figura 2.11.

Este método presenta ciertas particularidades:

Existe una serie de importantes dificultades aun no resueltas ya que la fisuración es uno de los problemas en la superficie de la carretera más difíciles de medir y evaluar usando equipos automáticos. En el estado actual del desarrollo, las técnicas automáticas de video-láser, incluso incorporando cámaras de video 3D y proyectores láser lineales, no permiten la medición de la profundidad real de las fisuras. La profundidad que puede percibir el láser es aproximadamente la visible. Es decir, con estos equipos puedes realizar una inspección de las características superficiales de la fisuración, pero no permite distinguir a que capa está afectando cada fisura.(García, 2011)

Figura 2.11.Esquema de funcionamiento de los equipos de auscultación superficial de pavimentos tipo Video-láser. Recuperado de<u>http://www.pavemetrics.com/applications/road-inspection/lcms2-en/</u>

2.6.3. Diagnóstico por ultrasonido

Este tipo de método para la evaluación y diagnóstico de fisuras en la parte superior de una capa asfáltica es del tipo no destructivo y su procedimiento se basa en un dispositivo portátil el cual genera una velocidad de propagación de ondas en una determinada frecuencia y longitud en donde depende solamente de las características físicas del medio y de la existencia de discontinuidades. La presencia de una grieta genera un obstáculo para que la onda pueda propagarse por la capa de pavimento asfaltico en dirección perpendicular de la misma.(Del Val Melús & Medina, 2010)

Se diagnostica el procedimiento de una manera simple en donde si la grieta a estudiar fuese TDC, la onda supondrá un obstáculo parcial, ya que la bordeara la grieta por debajo y el tiempo de demora en que la onda llegue al receptor indicara a que profundidad en la capa de pavimento asfaltico llega la grieta, como se presenta en la Figura 2.12.

Figura 2.12. Representación didáctica de la utilización de ondas para determinar profundidad de grietas Top-Down.Tomado de "Sobre las enfermedades de los pavimentos de las carreteras" por Del Val Melús & Medina, 2010, Madrid, España: Universidad Politécnica de Madrid

Por el contrario si fuera una grieta ascendente (BUC), la cual se ha originado en la capa inferior y ha llegado a aparecer en la superficie, la onda no pasará, ver Figura 2.14.Así es como se determina de manera no destructiva la presencia de agrietamiento por fatiga tipo top-down.

Figura 2.13. Representación didáctica de recorrido de la onda ante una grieta ascendente. Tomado de
"Sobre las enfermedades de los pavimentos de las carreteras" por Del Val Melús & Medina, 2010,
Madrid, España: Universidad Politécnica de Madrid

2.7. Predicción del agrietamiento por fatiga según AASHTO 2008 (MEPDG)

La Guía Mecanicista – Empírica de Diseño de Pavimentos, reconocida como AASHTO 2008, predice dos tipos de grietas relacionadas con la carga, grietas tipo cocodrilo y grietas longitudinales. La guía asume que las grietas tipo piel de cocodrilo se inician en la parte inferior de la capa asfáltica y se propagan a la superficie con el tráfico continuo de camiones, mientras que se supone que las grietas longitudinales se inician en la superficie. El número permitido de aplicaciones de carga por eje necesarias para incrementar el índice de daño direccionado a predecir ambos tipos de grietas relacionadas con la carga (cocodrilo y longitudinal), se muestra en la Ecuación (2-1):

$$Nf = k_{f1}(C)(C_H)B_{f1}(\varepsilon_t)^{k_{f2}B_{f2}}(E)^{k_{f3}\beta_{f3}}$$
⁽²⁻¹⁾

Donde:

Nf = número de repeticiones de aplicaciones de carga por eje, para pavimentos flexibles y recapeos

- ε_t = deformación unitaria por tensión en la posición crítica y calculados con un modelo de respuesta estructural in/in.
- E = módulo dinámico de la mezcla asfáltica medido a compresión, psi.
- k1, k2, k3 = parámetros globales de calibración

 β f1, β f2, β f3 = constantes de calibración de campo específicos de la mezcla (se asumen 1.0)

$$C = 10^{M}$$
 (2-2)

$$M = 4,84 \left(\frac{Vb}{Va+Vb} - 0,69\right)$$
(2-2.1)

Vbe = contenido de asfalto efectivo en volumen (%).

Va = porcentaje de vacíos con aire (%).

El factor C_H permite realizar una corrección para diferentes espesores de capas de asfalto y depende del tipo de agrietamiento.

a. Para agrietamiento de abajo hacia arriba (bottom-up)

$$C_H = \frac{1}{0,01 + \frac{0,003602}{1 + e^{(11,02 - 8,49H)}}}$$
(2-1.a)

b. Para agrietamiento de arriba hacia abajo (top-down)

$$C_H = \frac{1}{0,01 + \frac{12,00}{1 + e^{(15,676 - 2,8186H)}}}$$
(2-1.b)

Dónde:

= espesor total de la capa de asfalto, pulgadas.

La normativa AASHTO 2008 calcula el incremento de los índices de daño por fatiga a lo largo de las capas de asfalto a profundidades críticas. Este incremento sucesivo del índice de daño (Δ DI) se calcula dividiendo el número real de cargas por eje entre el número permitido de cargas por eje, según la hipótesis de Miner, para un tiempo específico y un intervalo de carga por eje para cada tipo de eje. El índice de daño acumulado (DI) para cada ubicación crítica se determina sumando los Δ DI a lo largo del tiempo, como se muestra en la Ecuación (2-3):

$$DI = \sum (\Delta DI)_{j,m,l,p,T} = \sum \left(\frac{n}{N_{f-HMA}}\right)_{j,m,l,p,T}$$
(2-3)

 $\langle \mathbf{a} \mathbf{a} \rangle$

Donde:

n = Número real de aplicaciones de carga por eje dentro de un periodo de tiempo especifico
j = Intervalo de carga por eje
m = Tipo de carga por eje (configuración de eje simple, tamden, tridem, etc.)
l = Tipo de camión, según la clasificación del MEPDG
p = Mes
T = Temperatura media para los cinco intervalos o quintiles de temperatura utilizados para subdividir cada mes, °F

El área del BUC y la longitud del TDC se calculan a partir del daño total a lo largo del tiempo, utilizando diferentes funciones de transferencia. La siguiente ecuación es la relación utilizada para predecir la cantidad de grietas de los dos tipos existentes.

a. Para agrietamiento del fondo de la capa hacia arriba (% del área total del carril):

$$FC_{bottom} = \left(\frac{6000}{1 + e^{(C_1 * C'_1 + C_2 * C'_2 * log10(D * 100))}}\right) * \left(\frac{1}{60}\right)$$
(2-3.a)

Donde:

FC bottom = Área de BUC que se inicia en la parte inferior de las capas de asfalto, (% del área total del carril)

D = Índice de daño acumulado en la parte inferior de las capas asfálticas
 C1 = 1.0, C2 = 1.0

C'1 = -2 * C'2

 $C'2 = -2,40874 - 39,748 * (1 + H)^{-2,856}$

b. Para agrietamiento de la superficie de la capa hacia abajo:

$$FC_{bottom} = \left(\frac{1000}{1 + e^{(7,0-3,5*\log 10(D))}}\right) * (10,56)$$
(2-3.b)

Donde:

FC Top = longitud por TPC, que se inician en la parte superior de las capas de asfalto, (pies/milla)

D = Índice de daño acumulado cerca de la parte superior de la superficie del asfalto

CAPITULO 3

3. TRAMOS DE VÍAS SELECCIONADOS IMPACTADOS POR EL AGRIETAMIENTO TOP-DOWN

3.1. Introducción

En las vías principales ecuatorianas de la región Costa el tipo de deterioro que ocurre con mayor frecuencia, y de manera confirmada por las rehabilitaciones que se realizan, es el agrietamiento top-down (TDC). En general, los daños que generan los agrietamientos top-down, inicialmente longitudinales, terminan siendo muy similares a la piel de cocodrilo de la fatiga clásica (BUT). Ver Figura 3.1.

Figura 3.1. Agrietamientos tipo top-down presentes en la vía "Durán-Boliche"

En los trabajos de rehabilitación con capas de refuerzo (recapeos) en vías con espesores ya considerables de capas asfálticas, como referencia: mayores a 15 cm,

que siempre conllevan trabajos previos de bacheo, normalmente se comienza con un fresado de 5 o 7,5 cm de profundidad que permite eliminar las zonas dañadas, como puede verse en la Figura 3.2. Esto es posible evidentemente porque las fisuras se encuentran en la parte superior de la capa asfáltica.

Figura 3.2. Trabajos de fresado en sectores de una vía

Lo llamativo de esta problemática que se genera en nuestras carreteras independientemente de sus causas, ya mencionadas en el Capítulo II, es que nos impacta de una manera muy rápida. Una vez realizada una rehabilitación, el proceso de agrietamiento inicia dentro de un período de 1 a 4 años.

Por lo antes expuesto, se consideró como deterioro TDC los indicados por el método PAVER (ASTM D6433-03) para la fatiga tipo piel de cocodrilo más las áreas correspondientes a las grietas longitudinales (mayormente) y transversales, donde se multiplicó la longitud por un ancho de afectación de 0,3 m. Se respetaron los criterios correspondientes a la intensidad de dichos daños.

3.2. Criterios de selección

Para la selección de los tramos de vías a estudiar se consideraron los siguientes aspectos:

- > vías con tráfico importante de acceso o salida de la ciudad de Guayaquil
- vías que fueran concesionadas, en este caso por las empresas CONCEGUA o CONORTE, que tienen información histórica sobre el tráfico, las estructuras de pavimentos existentes, las rehabilitaciones realizadas y un control de los deterioros a lo largo de los años, a través de evaluaciones tipo PAVER. En la práctica estas evaluaciones tuvieron fluctuaciones y no se realizaron todos los años, por lo que este fue un importante elemento de selección.

3.3. Vías seleccionadas

Las carreteras seleccionadas y sus respectivos tramos fueron:

• Vía "Durán – Boliche". Calzada sur

Tramo de estudio: 11+300 a 16+100 (4.8 km)

- Vía "Durán Boliche". Calzada norte
 - Tramo de estudio: 6+800 a 16+100 (9.3 km)
- Vía "Km 26 Puerto Inca"

Tramo de estudio: 5+600 a 10+900 (5.3 km)

• Vía "Durán – Jujan"

Tramo de estudio: 31+500 a 34+100 (2.6 km)

• Vía "Guayaquil – El Empalme"

Tramo de estudio: 60+000 a 71+000 (11.0 km)

3.4. Análisis de los deterioros por TDC de los tramos seleccionados

3.4.1. Vía "Durán – Boliche". Calzada Sur

Comportamiento del deterioro

Se puede observar en la Tabla 3.1.a partir de las inspecciones realizadas en las fechas indicadas.

Tabla 3.1.

Variación de los deterioros por TDC en la vía "Durán – Boliche"

ABSCISAS				DETERIORO		
INICIO	FINAL	REHABILITACIÓN	AGRIETAMI	ENTO ''TOP -	REHABILITACIÓN	
TRA	MOS		PAVER 2004	PAVER 2006	PAVER 2009	
11+300	11+400		0,0	18,0	85,0	
11+400	11+500		0,0	18,0	85,0	
11+500	11+600		0,0	18,0	85,0	
11+600	11+700		0,0	6,0	85,0	
11+700	11+800		0,0	6,0	85,0	
11+800	11+900		0,0	6,0	85,0	
11+900	12+000		0,0	6,0	85,0	
12+000	12+100		0,0	3,5	85,0	
12+100	12+200	Junio	0,0	3,5	85,0	Marzo
12+200	12+300	2002	0,0	2,0	85,0	2010
12+300	12+400	(recapeo	0,0	3,0	85,0	(recapeo
12+400	12+500	de 5 cm)	0,0	3,5	85,0	de 4 cm)
12+500	12+600		0,0	3,5	85,0	
12+600	12+700		0,0	5,0	85,0	
12+700	12+800		0,0	5,0	85,0	
12+800	12+900		0,0	12,0	85,0	
12+900	13+000		0,0	12,0	85,0	

13+000	13+100	0,0	12,0	85,0	
13+100	13+200	0,0	18,0	85,0	
13+200	13+300	0,0	3,5	85,0	
13+300	13+400	0,0	3,5	85,0	
13+400	13+500	0,0	5,0	85,0	
13+500	13+600	0,0	5,0	85,0	
13+600	13+700	0,0	5,0	85,0	
13+700	13+800	0,0	5,0	85,0	
13+800	13+900	0,0	5,0	85,0	
13+900	14+000	0,0	5,0	85,0	
14+000	14+100	0,0	3,0	85,0	
14+100	14+200	0,0	3,0	85,0	
14+200	14+300	0,0	3,0	85,0	
14+300	14+400	0,0	3,0	85,0	
14+400	14+500	0,0	3,0	85,0	
14+500	14+600	0,0	3,0	85,0	
14+600	14+700	0,0	4,0	85,0	
14+700	14+800	0,0	4,0	85,0	
14+800	14+900	2,0	5,0	85,0	
14+900	15+000	0,0	4,0	85,0	
15+000	15+100	0,0	4,0	85,0	
15+100	15+200	0,0	4,0	85,0	
15+200	15+300	0,0	4,0	85,0	
15+300	15+400	0,0	4,0	85,0	
15+400	15+500	2,0	6,0	85,0	
15+500	15+600	6,0	28,0	85,0	
15+600	15+700	7,0	34,0	85,0	
15+700	15+800	0,0	5,0	85,0	
15+800	15+900	0,0	5,0	85,0	

15+900	16+000	0,0	5,0	85,0	
16+000	16+100	0,0	5,0	85,0	

Comportamiento del tráfico

Se muestra atendiendo a los ejes equivalentes de 82 kN acumulados en el carril de diseño para cada año analizado (ESAL/AÑO). Dicha variación puede apreciarse en la Tabla 3.2.

Tabla 3.2.

Variación de los ESAL en la vía "Durán – Boliche"

AÑO	ESAL/AÑO
2002	0
2003	663.444
2004	676.209
2005	791.180
2006	928.416
2007	953.630
2008	979 532
2009	1.006.139

Estructura inicial del pavimento existente.

Se muestra en la Tabla 3.3.

Tabla 3.3.

Estructura inicial en la vía "Durán – Boliche"

Сара	Espesor (cm)	Módulo elástico (MPa)
Capa asfáltica	16,0	Variable (*)

Capas granulares	90,0	151,5
Subrasante	XXX	47,0

(*) Se establecerán más adelante.

Variación de deterioros con el impacto del tráfico en el tiempo

• *Relación entre las áreas deterioradas por TDC y el tiempo de explotación.*

Se muestran en la Tabla 3.4 y en la Figura 3.3 la variación en el tiempo de las áreas dañadas promedios cada 100 m de vía. Dichos promedios incluyen los deterioros TDC con todo tipo de intensidad.

Tabla 3.4.

Áreas deterioradas respecto al tiempo en la vía "Durán – Boliche"

Tiempo (años)	Área deteriorada (m²)
	km 11,3 a 16,1
0	0
2	0,4
4	7,0
7	85,0

Figura 3.3. Variación de los deterioros con el tiempo en la vía "Durán – Boliche" Calzada Sur

• Relación de las áreas deterioradas por TDC con los ESAL acumulados.

Se muestran en la Tabla 3.5 y en la Figura 3.4 la variación de la densidad de daños promedio cada 100 m de vía, en porcentaje respecto al área, con los ESAL.

Tabla 3.5.

Áreas deterioradas respecto a los ESAL en la vía "Durán – Boliche"

ESAL	Área deteriorada (%)
acumulados	km 11,3 a 16,1
0	0
1.339.653	0,1
3.059.249	2,0
5.998.550	24,3

Figura 3.4. Variación de los deterioros con los ESAL. Vía "Durán-Boliche" Calzada Sur

3.4.2. Vía "Durán - Boliche". Calzada Norte

Comportamiento del deterioro.

Se puede observar en la Tabla 3.6.a partir de las inspecciones realizadas en las fechas indicadas.

Tabla 3.6.

Variación de los deterioros por TDC en la vía "Durán - Boliche"

ABSCISAS			DETERIOROS (m2)				DETERIOROS (m2)		
INICIO	FINAL	REHABILI TACIÓN	AGRIETAMIENTO TOP-DOW		I AGRIETAMIENTO TOP-DOWN		REHABILITA CIÓN	AGRIETAMIENTO TOP- DOWN	REHABILITA CIÓN
TRA	MOS		PAVER 2004	PAVER 2006	PAVER 2007		PAVER 2009		
6+800	6+900		0,0	9,0	15,0		35,0		
6+900	7+000		0,0	9,0	15,0		35,0		
7+000	7+100		0,0	100,0	120,0		155,0		
7+100	7+200		0,0	100,0	120,0		155,0		
7+200	7+300		0,0	100,0	125,0		160,0		
7+300	7+400		0,0	100,0	125,0		160,0		
7+400	7+500		0,0	20,0	37,0		72,0		
7+500	7+600		0,0	20,0	37,0		72,0		
7+600	7+700		0,0	15,0	16,5		51,5		
7+700	7+800		0,0	15,0	16,5		51,5		
7+800	7+900		0,0	125,0	156,5		191,5		
7+900	8+000		0,0	125,0	156,5		191,5		
8+000	8+100		0,0	150,0	195,0		230,0		
8+100	8+200		0,0	150,0	195,0		230,0		
8+200	8+300		0,0	20,0	42,0		65,0		
8+300	8+400		0,0	20,0	42,0		65,0		
8+400	8+500		0,0	3,0	25,0		65,0		
8+500	8+600		0,0	3,0	25,0		65,0		
8+600	8+700		0,0	4,0	50,0	NADA	65,0		
8+700	8+800		0,0	4,0	50,0		65,0	Junio	
8+800	8+900		0,0	12,0	25,0		65,0	2009	
8+900	9+000		0,0	12,0	25,0		65,0	(4 cm)	
9+000	9+100		0,0	0,0	1,0		7,0		

0+100	0+200		0.0	0.0	1.0	7.0	
9+100	9+200		0,0	0,0	1,0	7,0	
9+200	9+300		0,0	0,0	3,0	7,0	
9+300	9+400		0,0	0,0	3,0	7,0	
9+400	9+500		0,0	0,0	2,0	7,0	
9+500	9+600		0,0	0,0	2,0	7,0	
9+600	9+700		0,0	0,0	0,0	7,0	
9+700	9+800		0,0	0,0	0,0	7,0	
9+800	9+900		0,0	0,0	0,0	7,0	
9+900	10+000		0,0	0,0	0,0	7,0	
10+000	10+100		0,0	0,5	6,0	7,0	
10+100	10+200		0,0	0,5	6,0	7,0	
10+200	10+300		0,0	0,0	16,0	23,0	
10+300	10+400		0,0	0,0	16,0	23,0	
10+400	10+500		0,0	1,0	6,0	13,0	
10+500	10+600		0,0	1,0	6,0	13,0	
10+600	10+700		0,0	0,5	11,0	18,0	
10+700	10+800		0,0	0,5	11,0	18,0	
10+800	10+900		0,0	1,8	4,0	7,0	
10+900	11+000	Agosto	0,0	1,8	4,0	7,0	
11+000	11+100	2002	0,0	0,3	3,0	7,0	
11+100	11+200	(5 cm)	0,0	0,3	3,0	7,0	
11+200	11+300		0,0	0,4	3,0	7,0	
11+300	11+400		0,0	4,6	15,0	0,0	
11+400	11+500		0,0	0,3	28,5	0,0	
11+500	11+600		0,0	0,3	28,5	0,0	
11+600	11+700		0,0	25,0	54,5	0,0	
11+700	11+800		0,0	25,0	54,5	0,0	
11+800	11+900		0,0	55,0	94,0	0,0	
11+900	12+000		0,0	55,0	94,0	0,0	
12+000	12+100		0,0	75,0	103,0	0,0	
12+100	12+200		0.0	75.0	103,0	0,0	
12+200	12+300		0,0	0,0	24,0	0,0	
12+300	12+400		0.0	0.0	24.0	0.0	
12+400	12+500		0.0	0.0	24.0	0.0	
12+500	12+600		0.0	0.0	24.0	0.0	
12+500	12+700		0.0	2.0	0.0	0.0	
12+500 12+600	12+600 12+700		0,0 0,0	0,0 2,0	24,0 0,0	0,0 0,0	

12+700	12+800	0,0	2,0	0,0		0,0	
12+800	12+900	0,0	4,0	13,0		0,0	
12+900	13+000	0,0	4,0	13,0		0,0	
13+000	13+100	0,0	2,0	0,0		0,0	
13+100	13+200	0,0	2,0	0,0	Febrero	0,0	
13+200	13+300	0,0	2,0	8,0	2007	0,0	NADA
13+300	13+400	0,0	2,0	8,0	(5 cm)	0,0	
13+400	13+500	0,0	6,1	30,0		0,0	
13+500	13+600	0,0	6,1	30,0		0,0	
13+600	13+700	0,0	7,5	6,0		0,0	
13+700	13+800	0,0	7,5	6,0		0,0	
13+800	13+900	0,0	1,0	10,0		0,0	
13+900	14+000	0,0	1,0	10,0		0,0	
14+000	14+100	0,0	1,2	2,0		0,0	
14+100	14+200	0,0	1,2	2,0		0,0	
14+200	14+300	0,0	3,2	3,0		0,0	
14+300	14+400	0,0	3,2	3,0		0,0	
14+400	14+500	0,0	10,6	12,0		0,0	
14+500	14+600	0,0	11,6	12,0		0,0	
14+600	14+700	0,0	11,5	40,0		0,0	
14+700	14+800	0,0	11,5	40,0		0,0	
14+800	14+900	0,0	9,0	50,0		0,0	
14+900	15+000	0,0	9,0	50,0		0,0	
15+000	15+100	0,0	2,0	5,0		0,0	
15+100	15+200	0,0	2,0	5,0		0,0	
15+200	15+300	0,0	3,5	10,0		0,0	
15+300	15+400	0,0	3,5	10,0		0,0	
15+400	15+500	0,0	15,5	30,0		0,0	
15+500	15+600	0,0	15,5	30,0		0,0	
15+600	15+700	0,0	4,0	12,0		0,0	
15+700	15+800	0,0	4,0	12,0		0,0	
15+800	15+900	0,0	6,9	10,6		0,0	
15+900	16+000	0,0	6,9	10,6		0,0	
16+000	16+100	0,0	4,0	37,0		0,0	

Comportamiento del tráfico.

Dicha variación puede apreciarse en la Tabla 3.7.

Tabla 3.7.

Variación de los ESAL en la vía "Durán - Boliche" Calzada Norte

AÑO	ESAL/AÑO
2002	0
2003	663.444
2004	676.209
2005	791.180
2006	928.416
2007	953 630
2007	979 532
2000	1.006.139

Estructura inicial del pavimento existente.

Se muestra en la Tabla 3.8.

Tabla 3.8.

Estructura inicial en vía "Durán - Boliche" Calzada Norte

Сара	Espesor (cm)	Módulo elástico (MPa)
Capa asfáltica	17,0	Variable (*)
Capas granulares	120,0	152,5
Subrasante	XXX	47,0

(*) Se establecerán más adelante.

Variación de deterioros con el impacto del tráfico en el tiempo.

 Relación entre las áreas deterioradas por TDC con el tiempo de explotación. Se muestran en la Tabla 3.9. y en la Figura 3.5 la variación en el tiempo de las áreas dañadas promedios cada 100 m de vía. Dichos promedios incluyen los deterioros TDC con todo tipo de intensidad.

Tabla 3.9.

Incremento de los deterioros con el tiempo en la vía "Durán - Boliche" Calzada Norte

	Área deteriorada (m²)					
Tiempo (años)	km 6,8 a 11,3	km 11,3 a 16,1				
0	0,0	0,0				
2	0,0	0,0				
4	25,0	10,5				
5	38,2	24,8				
7	56,4					

• Relación de las áreas deterioradas por TDC con los ESAL acumulados.

Se muestran en la Tabla 3.10. y en la Figura 3.6. la variación de la densidad de daños promedio cada 100 m de vía, en porcentaje respecto al área, con los ESAL.

Tabla 3.10.

Incremento de daños	(%) cc	on los ESAL e	n la vía	"Durán -	Boliche"	Calzada Norte
---------------------	--------	---------------	----------	----------	----------	---------------

ESAL	Área deteriorada (%)					
acumulados	km 6,8 a 11,3	km 11,3 a 16,1				
0	0,0	0,0				
1.339.653	0,0	0,0				
3.059.249	7,1	3,0				
4.012.879	10,9	7,1				
5 998 550	16.1					

Figura 3.6. Variación de los deterioros con los ESAL en la vía"Durán - Boliche" Calzada Norte

3.4.3. Vía "Km26 – Puerto Inca"

Comportamiento del deterioro.

Ver Tabla 3.11.

Tabla 3.11.

Variación de los deterioros por TDC en la vía "Km26 - Puerto Inca"

ABSC	CISAS		DETE (1	RIOROS m2)		DETERIOROS (m2)			
INICIO	FINAL	REHABILI TACIÓN	AGRIET TOP-	AMIENTO DOWN	REHABILI TACIÓN	AGRIE	AGRIETAMIENTO TOP- DOWN		REHABILIT ACIÓN
TRA	MOS		PAVER 2004	PAVER 2005		PAVER 2007	PAVER 2009	PAVER 2010	
5+600	5+700		42,0	47,0		7,0	210,0	380,0	
5+700	5+800		30,0	35,0		7,0	210,0	380,0	
5+800	5+900		26,0	52,0		7,0	210,0	380,0	
5+900	6+000		8,0	35,0		7,0	210,0	380,0	
6+000	6+100		45,0	53,0		7,0	210,0	380,0	
6+100	6+200		30,0	43,0		7,0	210,0	380,0	
6+200	6+300		12,0	103,0		7,0	210,0	380,0	
6+300	6+400		6,0	99,0		7,0	210,0	380,0	
6+400	6+500		10,0	82,0		7,0	210,0	380,0	
6+500	6+600	Noviembre	20,0	90,0	Marzo- Abril	7,0	210,0	380,0	Julio
6+600	6+700	2000	18,0	80,0	2005	7,0	210,0	380,0	2010
6+700	6+800	(6 cm)	10,0	50,0	(5 cm)	7,0	42,0	140,0	(5 cm)
6+800	6+900		10,0	37,0		7,0	42,0	140,0	
6+900	7+000		5,0	24,0		7,0	42,0	140,0	
7+000	7+100		10,0	55,0		14,0	42,0	140,0	
7+100	7+200		12,0	55,0		14,0	42,0	140,0	
7+200	7+300		13,0	31,0		14,0	42,0	140,0	
7+300	7+400		25,0	31,0		14,0	42,0	140,0	
7+400	7+500		25,0	63,0		14,0	42,0	140,0	
7+500	7+600		25,0	63,0		14,0	42,0	140,0	
7+600	7+700		15,0	41,0		14,0	42,0	140,0	
7+700	7+800		20,0	36,0		14,0	42,0	140,0	
7+800	7+900		30,0	44,0		14,0	42,0	140,0	

1	1	1	I		l	1	
7+900	8+000	25,0	39,0	14,0	42,0	140,0	
8+000	8+100	30,0	35,0	14,0	42,0	140,0	
8+100	8+200	50,0	55,0	14,0	42,0	140,0	
8+200	8+300	40,0	51,0	14,0	42,0	140,0	
8+300	8+400	40,0	51,0	14,0	42,0	140,0	
8+400	8+500	30,0	69,0	14,0	42,0	140,0	
8+500	8+600	50,0	91,0	7,0	42,0	140,0	
8+600	8+700	20,0	44,0	7,0	42,0	140,0	
8+700	8+800	20,0	44,0	7,0	42,0	140,0	
8+800	8+900	10,0	33,0	7,0	42,0	140,0	
8+900	9+000	10,0	15,0	7,0	42,0	140,0	
9+000	9+100	8,0	13,0	20,0	24,0	140,0	
9+100	9+200	5,0	10,0	20,0	24,0	140,0	
9+200	9+300	10,0	40,0	20,0	24,0	140,0	
9+300	9+400	30,0	50,0	20,0	24,0	140,0	
9+400	9+500	32,0	51,0	20,0	24,0	140,0	
9+500	9+600	38,0	63,0	20,0	24,0	140,0	
9+600	9+700	50,0	60,0	20,0	24,0	140,0	
9+700	9+800	30,0	40,0	20,0	24,0	140,0	
9+800	9+900	20,0	33,0	20,0	24,0	140,0	
9+900	10+000	20,0	33,0	20,0	24,0	140,0	
10+000	10+100	15,0	20,0	56,0	66,0	140,0	
10+100	10+200	10,0	15,0	56,0	66,0	140,0	
10+200	10+300	5,0	25,0	56,0	66,0	140,0	
10+300	10+400	5,0	25,0	56,0	66,0	140,0	
10+400	10+500	10,0	30,0	56,0	66,0	140,0	
10+500	10+600	3,0	3,0	56,0	66,0	140,0	
10+600	10+700	2,0	3,0	14,0	24,0	140,0	
10+700	10+800	5,0	5,0	14,0	24,0	140,0	
10+800	10+900	5,0	5,0	14,0	24,0	140,0	

Comportamiento del tráfico

Dicha variación puede apreciarse en la Tabla 3.12.

Tabla 3.12.

AÑO	ESAL/AÑO
2000	550.968
2001	603.572
2002	661.201
2003	724.331
2004	793.488
2005	869.249
2006	952.242
2007	1.043.160
2008	1.142.759
2009	1.251.867

2010

Variación de los ESAL en la vía "Km 26 - Puerto Inca"

Estructura inicial del pavimento existente

La vía fue intervenida 2 veces a lo largo de su periodo de estudio. Ver Tabla 3.13.

1.851.511

Tabla 3.13.

Estructura en vía "Km 26 - Puerto Inca"

	AÑO	2000	AÑO 2005		
Сара	Espesor (cm) Módulo elástico (MPa)		Espesor (cm)	Módulo elástico (MPa)	
Capa asfáltica	20,0	Variable (*)	25,0	Variable (*)	
Capas granulares	52,0	134,4	52,0	134,4	
Subrasante	XXX	30,3	XXX	30,3	

(*) Se establecerán más adelante.

Variación de deterioros con el impacto del tráfico en el tiempo

Relación entre las áreas deterioradas por TDC con el tiempo de explotación.

Se muestra en la Tabla 3.14. y en la Figura 3.7. la variación en el tiempo de las áreas dañadas promedios cada 100m de vía: Dichos promedios incluyen los deterioros TDC con todo tipo de intensidad.

Tabla 3.14.

-	1 1				1			,	(177	2	D	
Incremento	de l	os det	erioros	con	el	tiemno	en	via	"Km	26 -	Puerto	Inca‴
1		00 0000	0.00.00		•••	nemp o	••••		11		1 110.10	

Tiempo (años)	Área deteriorada (m²) 2000 a 2005	Tiempo (años)	Área deteriorada (m²) 2005 a 2010
0	0	0	0
4	20,3	2	17,4
5	43,4	4	75,2
		5	189,8

Figura 3.7. Variación de los deterioros con el tiempo en la vía "Km 26 - Puerto Inca"

 Relación entre las áreas deterioradas por TDC con el tiempo de explotación. Se muestran en la Tabla 3.15. y en la Figura 3.8. la variación de la densidad de años promedio cada 100 m de la vía, en porcentaje respecto al área, con los ESAL. Tabla 3.15.

ESAL	Área (%)	ESAL	Área (%)	
acumulados	2000 a 2005	acumulados	2005 a 2010	
0	0	0	0	
2.318.827	2,9	1.662.835	2,5	
3.043.201	6,2	3.658.357	10,7	
		4.801.184	27,1	

Incremento de daños (%) con los ESAL en la vía "Km 26 - Puerto Inca"

Figura 3.8. Variación de los deterioros con los ESAL en la vía "Km 26 - Puerto Inca"

3.4.4. Vía "Durán – Jujan"

Comportamiento del deterioro.

Ver Tabla 3.16.

Tabla 3.16.

Variación de los deterioros por TDC en la vía "Durán – Jujan"

ABSC	ISAS		DETE		
INICIO	FINAL	REHABILITACIÓN	AGRIETAMIENTO	"TOP - DOWN" (m ²)	REHABILITACIÓN
TRA	MOS		ABRIL 2004	PAVER 2006	
31+500	31+600		70	315	
31+600	31+700		100	315	
31+700	31+800		70	315	
31+800	31+900		20	315	
31+900	32+000		7	315	
32+000	32+100		100	140	
32+100	32+200		140	160	
32+200	32+300		100	140	
32+300	32+400		35	90	
32+400	32+500		20	90	
32+500	32+600	Octubre	20	72	Marzo
32+600	32+700	2000	7	72	2008
32+700	32+800	(4 cm)	20	72	(5 cm)
32+800	32+900		100	125	
32+900	33+000		140	160	
33+000	33+100		140	165	
33+100	33+200		100	165	
33+200	33+300		100	165	
33+300	33+400		70	165	
33+400	33+500		70	165	
33+500	33+600		35	225	
33+600	33+700		70	225	
33+700	33+800		140	225	
33+800	33+900		70	225	

33+900	34+000	70	225	
34+000	34+100	100	225	

Comportamiento del tráfico

Dicha variación puede apreciarse en la Tabla 3.17.

Tabla 3.17.

Variación de los ESAL en la vía "Durán – Jujan"

AÑO	ESAL/AÑO km 31,5 a 34,1		
2000	0	0	
2001	879.801	879.801	
2002	1.791.343	911.542	
2003	2.735.933	944.590	
2004	3.714.939	979.006	
2005	4.729.793	1.014.854	
2006	5.781.995	1.052.202	

Estructura inicial del pavimento existente.

Se muestra en la Tabla 3.18.

Tabla 3.18.

Estructura inicial en vía "Durán – Jujan"

	km 31,5 a 34,1			
Capa	Espesor (cm)	Modulo elástico (MPa)		
Capa asfáltica	23,0	Variable (*)		
Capas granulares	58,0	175,0		

Subrasante	XXX	28,0

(*) Se establecerán más adelante.

Variación de deterioros con el impacto del tráfico en el tiempo

 Relación entre las áreas deterioradas por TDC con el tiempo de explotación.

Se muestra en la Tabla 3.19. y en la Figura 3.9. la variación en el tiempo de las áreas dañadas promedios cada 100 m de vía: Dichos promedios incluyen los deterioros TDC con todo tipo de intensidad.

Tabla 3.19.

Incremento de los deterioros con el tiempo en vía "Durán – Jujan"

Tiempo (años)	Área deteriorada (m²) km 31,5 a 34,1
0	0,0
4	73,6
6	187,3

Figura 3.9. Variación de los deterioros con el tiempo en la vía "Durán – Jujan"

 Relación entre las áreas deterioradas por TDC con el tiempo de explotación.

Se muestran en la Tabla 3.20. y en la Figura 3.10. la variación de la densidad de años promedio cada 100 m de la vía, en porcentaje respecto al área, con los ESAL.

Tabla 3.20.

Incremento de daño (%) con los ESAL en la vía "Duran – Jujan"

FSAL	Área (%)
acumulado	km 31,5 a 34,1
0	0,0
3.714.939	8,2
5.781.995	20,8

Figura 3.10. Variación de los deterioros con los ESAL en la vía "Duran - Jujan"

3.4.5. Vía "Guayaquil – El Empalme"

Comportamiento del deterioro.

Ver Tabla 3.21.

Tabla 3.21.

Variación de los deterioros por TDC en la vía "Guayaquil - El Empalme"

ABSCISAS			DETERIOROS (m2)			
INICIO	FINAL	REHABILITACIÓN	AGRIET	AGRIETAMIENTO TOP-DOWN		REHABILITACIÓN
TRA	MOS		PAVER 2004	PAVER 2006	PAVER 2007	
60+000	60+100		0	26	78	
60+100	60+200		0	26	78	
60+200	60+300		2	37	175	Diciembre
60+300	60+400		0	37	175	2007
60+400	60+500		12	100	175	(5 cm)
60+500	60+600		0	100	125	
60+600	60+700		0	67	125	
60+700	60+800	Diciembre	0	67	125	
60+800	60+900	2000	0	67	125	
60+900	61+000	(4 cm)	10	67	125	
61+000	61+100		0	20	35	
61+100	61+200		0	20	35	
61+200	61+300		0	20	35	
61+300	61+400		0	20	35	
61+400	61+500		0	56	105	
61+500	61+600		0	56	105	
61+600	61+700		4,5	56	105	
61+700	61+800		30	56	105	
61+800	61+900		0	90	105	
61+900	62+000		0	90	105	
62+000	62+100		10	35	70	
62+100	62+200		0	35	70	
62+200	62+300		0	35	70	
62+300	62+400		0	35	70	

62+400	62+500		0	35	70	
62+500	62+600		0	35	75	
62+600	62+700		0	30	75	
62+700	62+800		5	30	75	
62+800	62+900		2	30	75	
62+900	63+000		0	30	75	
63+000	63+100		0	27	85	
63+100	63+200		0	27	85	
63+200	63+300		0	60	85	
63+300	63+400		0	60	85	
63+400	63+500		0	50	85	
63+500	63+600		3	50	85	
63+600	63+700		20	65	85	
63+700	63+800		0	65	85	
63+800	63+900		4	70	85	
63+900	64+000		4	70	85	
64+000	64+100		4	70	175	
64+100	64+200		4	70	175	
64+200	64+300		0	80	175	
64+300	64+400		0	80	175	
64+400	64+500		0	45	70	
64+500	64+600		0	45	70	
64+600	64+700		0	50	140	
64+700	64+800		0	50	140	
64+800	64+900		0	50	120	
64+900	65+000		5	50	120	
65+000	65+100	Noviembre	0	30	140	Agosto
65+100	65+200	2000	0	30	140	2008
65+200	65+300	(7,5 cm)	2	105	140	(5 cm)
65+300	65+400		4	105	140	
65+400	65+500		1,5	65	140	
65+500	65+600		10	45	70	
65+600	65+700		0	30	70	
65+700	65+800		2	30	70	
65+800	65+900		5	25	70	
65+900	66+000		0	25	70	

66+000	66+100	0	45	70	
66+100	66+200	40	45	70	
66+200	66+300	0	30	70	
66+300	66+400	0	10	25	
66+400	66+500	0	15	25	
66+500	66+600	6	15	25	
66+600	66+700	0	10	25	
66+700	66+800	0	10	25	
66+800	66+900	0	4	25	
66+900	67+000	0	4	25	
67+000	67+100	0	2	15	
67+100	67+200	0	2	15	
67+200	67+300	0	0	15	
67+300	67+400	0	0	15	
67+400	67+500	0	5	15	
67+500	67+600	1,5	5	45	
67+600	67+700	10	35	45	
67+700	67+800	25	35	45	
67+800	67+900	20	35	45	
67+900	68+000	0	35	45	
68+000	68+100	0	20	35	
68+100	68+200	5	20	35	
68+200	68+300	12	30	35	
68+300	68+400	0	30	35	
68+400	68+500	10	10	35	
68+500	68+600	1	10	35	
68+600	68+700	5	15	35	
68+700	68+800	0	15	35	
68+800	68+900	7	15	35	
68+900	69+000	0	15	35	
69+000	69+100	3	90	210	
69+100	69+200	20	90	210	
69+200	69+300	0	55	210	
69+300	69+400	0	55	85	
69+400	69+500	0	20	85	
69+500	69+600	0	20	85	

60 600	(0) 700		0	50	05	
69+600	69+700		0	50	85	
69+700	69+800	Noviembre	0	50	85	
69+800	69+900	2000	3	60	85	
69+900	70+000	(4 cm)	5	60	85	
70+000	70+100		60	60	110	
70+100	70+200		60	60	110	
70+200	70+300		0	46	110	
70+300	70+400		0	46	110	
70+400	70+500		0	51	110	
70+500	70+600		0	51	75	
70+600	70+700		0	60	75	
70+700	70+800		4	60	75	
70+800	70+900		0	46	75	
70+900	71+000		10	46	75	

Comportamiento del tráfico.

Dicha variación puede apreciarse en la Tabla 3.22. Tabla 3.22.

Variación de los ESAL en la vía "Guayaquil - El Empalme"

AÑO	ESAL/AÑO
2000	560.761
2001	678.900
2002	747.800
2003	771.175
2004	885.600
2005	954.500
2006	1.003.858
2007	1.024.266

Estructura inicial del pavimento existente.

Se muestra en laTabla 3.23.

Tabla 3.23.

Estructura in	icial en [.]	vía"	Guayaquil -	· El Empalme"
			~ 1	1

Tramo	km 60,0 a 62,2 y km 69,2 a 71,0		km 62,2 a 69,2	
Сара	Espesor (cm)	Módulo elástico (MPa)	Espesor (cm)	Módulo elástico (MPa)
Capa asfáltica	18,0	Variable (*)	22,0	Variable (*)
Capas granulares	20,0	150,9	20,0	177,3
	27,0	88,6	27,0	91,8
Subrasante	XXX	45,0	XXX	53,5

^(*) Se establecerán más adelante.

Variación de deterioros con el impacto del tráfico en el tiempo.

 Relación entre las áreas deterioradas por TDC con el tiempo de explotación.

Se muestran en la Tabla 3.24. y en la Figura 3.11 la variación en el tiempo de las áreas dañadas promedios cada 100 m de vía. Dichos promedios incluyen los deterioros TDC con todo tipo de intensidad.

Tabla 3.24.

Incremento de los deterioros con el tiempo en la vía "Guayaquil - El Empalme"

	Área deteriorada (m²)				
Tiempo (años)	km 60,0 a 62,2	km 62,2 a 69,2	km 69,2 a 71,0		
0	0	0	0		
4	3,1	3,4	7,9		
6	52,2	36,9	49,8		
7	100,7	75,7	96,1		

Figura 3.11. Variación de los deterioros con el tiempo en la vía "Guayaquil - El Empalme"

• Relación de las áreas deterioradas por TDC con los ESAL acumulados.

Se muestran en la Tabla 3.25. y en la Figura 3.12la variación de la densidad de daños promedio cada 100 m de vía, en porcentaje respecto al área, con los ESAL.

Tabla 3.25.

ESAL	Área deteriorada (%)				
acumulado	km 60,0 a 62,2	km 62,2 a 69,2	km 69,2 a 71,0		
0	0,0	0,0	0		
3.083.475	0,4	0,5	1,1		
5.041.833	7,5	5,3	7,1		
6.066.099	14,4	10,8	13,7		

Figura 3.12. Variación de los deterioros con los ESAL en la vía "Guayaquil - El Empalme"

3.5. Análisis comparativo

En la Figura 3.13. se puede observar la variación obtenida en todas las vías analizadas. Los tramos con mayores afectaciones, por encima del 20% de deterioro para el período de tiempo analizado o su correspondiente número de ejes equivalentes de 8,2 ton acumulados, son "km 26 - Puerto Inca" (km 5,6 a 10,9), "Durán – Boliche" Calzada Sur (km 11,3 a 16,1) y "Durán – Jujan" (km 31,5 a 34,1).

Figura 3.13. Variación de los deterioros con los ESAL en las vías mencionadas

En la Figura 3.14. se muestra la variación de la densidad de daños promedio cada 100 m de vía, en porcentaje respecto al área, respecto a los ESAL de todas las vías mencionadas, mostrando para la curva de ajuste un coeficiente de determinación R² del 74,7%, que puede considerarse un valor aceptable para este tipo de análisis donde existen muchas variables interrelacionadas, desde la calidad de las mezclas colocadas hasta los procedimientos constructivos empleados.

Figura 3.14.Curva de ajuste de ESAL vs (%) agrietamiento de las vías mencionada

CAPITULO 4

4. ANÁLISIS MECANICISTA DE PAVIMENTOS

4.1. Metodología

Para profundizar en el comportamiento obtenido de los agrietamientos top down en las estructuras estudiadas se realizará un análisis basado en principios mecanicistas a cada una de dichas estructuras. Es decir, se deberán determinar las respuestas (tensiones y deformaciones) ante una carga estándar de diseño y luego realizar un análisis de fallo aplicando ciertos modelos de desempeño, en este caso con los criterios de AASHTO 2008. Se considerará en estos análisis las condiciones climáticas de la región costa, en especial la temperatura, dada la naturaleza viscoelástica del asfalto.

4.2. Análisis de la temperatura en la región costa del Ecuador

De primordial importancia es la determinación de las temperaturas de trabajos de los pavimentos ya que inciden directamente en el módulo dinámico y el coeficiente de Poisson de la mezcla asfáltica. Se consideraron los estudios ya realizados para la región Costa por (Andrade & Franco, 2019), en su trabajo de titulación "Los pavimentos compuestos como alternativa constructiva para vías de tráfico pesado".

En dicho trabajo se calculó una temperatura media ponderada según el porcentaje de vehículos pesados y la temperatura de la mezcla asfáltica a distintas profundidades para la región Costa, como se muestra en la Tabla 4.1.

Tabla 4.1.

Resultados de la temperatura media ponderada en función del tráfico y profundidad de medición.

Temperatura				
Costa				
z (cm)	T (°C)			
0	38,3			
5	35,1			
10	34,2			
15	33,7			

Nota: "Los pavimentos compuestos como alternativa constructiva para vías de tráfico pesado". Andrade, N. y Franco, F. (2019). Trabajo de Titulación UCSG. Cap. 3, p.

40.

Con las temperaturas establecidas se analizan más adelante las propiedades de la mezcla asfáltica donde las mismas inciden: módulo dinámico y coeficiente de Poisson.

4.3. Módulo dinámico de la mezcla asfáltica

El módulo dinámico es una de las propiedades fundamentales de las mezclas asfálticas, imprescindible para el diseño de pavimentos o su rehabilitación. Se determina a nivel experimental de acuerdo a la norma AASHTO TP62-03, que describe al módulo dinámico como "el valor absoluto del Módulo Complejo que define las propiedades elásticas de un material de viscosidad lineal sometido a una carga sinusoidal".

Para nuestro estudio se decidió utilizar la ecuación de predicción desarrollada por Witczack y utilizada por las metodologías de diseño de NCHRP 2002 y AASHTO 2008 para los niveles de análisis 2 y 3 según SUPERPAVE. Dicha ecuación es la siguiente (NCHRP, 2002):

$$\begin{split} log E^* \\ &= 3.750063 + 0.02932\rho_{200} - 0.001767(\rho_{200})^2 - 0.002841\rho_4 - 0.058097V_a \\ &- 0.802208 \left(\frac{V_{beff}}{V_{beff} + V_a}\right) \\ &+ \frac{3.871977 - 0.0021\rho_4 + 0.003958\rho_{38} - 0.000017(\rho_{38})^2 + 0.005470\rho_{34}}{1 + e^{(-0.603313 - 0.313351\log(f) - 0.393532\log(n))}} \end{split}$$

4-1)

Donde:

E* = módulo dinámico, psi

n = viscosidad del asfalto al envejecimiento,
$$10^6$$
 Poise

$$f = frecuencia de carga. Hz$$

 V_a = contenido de vacío, %

 V_{beff} = contenido efectivo de asfalto, % por volumen

 ρ_{34} = % retenido acumulado en el tamiz ³/₄

 ρ_{38} = % retenido acumulado en el tamiz 3/8

 ρ_4 = % retenido acumulado en el tamiz no. 4

 $\rho_{200} = \%$ pasante del tamiz 200

Un resumen de la información estadística obtenida en el desarrollo de esta expresión se muestra a continuación:

$$R^2 = 0.96$$

Se/Sy = 0.24

Número de puntos de datos = 2750

Rango de temperatura	= 0 a 130 °F
Tasas de carga	= 0.1 a 25 Hz
Numero de mezclas	= 205 total, 171 con ligantes de asfalto sin modificar, 34 con ligantes modificados
Número de ligantes utilizados	= 23 total, 9 no modificados, 14 modificados
Número de tipo de agregados	= 39
Métodos de compactación	= amasado y giratorio
Tamaño de espécimen	= Cilindros 4" x 8" o 2.75" x 5.5"

A continuación se precisan algunos aspectos necesarios para poder aplicar la ecuación de predicción de módulos dinámicos de Witczack.

Análisis de la frecuencia

Un detalle importante en estos análisis es considerar la variación del tiempo de aplicación de carga (en segundos o en Hz) en la medida que se incrementa la profundidad de análisis dentro de las capas asfálticas, en especial en nuestro caso donde en general existen capas asfálticas gruesas.

El tiempo de aplicación de carga t_c (en segundos) fue obtenido como base en la ecuación 4.1 y la frecuencia de carga fue obtenida por la ecuación 4.2, la cual es la más frecuente de usaren el mundo.

$$t_c = \frac{L}{V} 10^{0.004h} \tag{4-2}$$

$$F = \frac{1}{2\pi t_c} \tag{4-3}$$

Donde:

L = longitud de contacto de la llanta con el pavimento (generalmente 30cm)

V = velocidad del vehículo en cm/s

H = profundidad en cm a la cual se estima el t_c

De acuerdo a la ANT (2018) los límites de velocidad establecen los rangos de velocidades según el tipo de vía para el Ecuador. En nuestro caso se selecciona una velocidad de operación igual a 70 km/h que corresponde a la máxima velocidad para vehículos de carga en rectas de carreteras.

Aplicando los criterios anteriores se obtienen los resultados que se muestran en la

Tabla 4.2.

Tabla 4.2.

Variación de la frecuencia con	la profundidad para una	velocidad de 70 km/h
--------------------------------	-------------------------	----------------------

h (cm)	V (km/h)	V (cm/s)	tc (s)	Hz
0	70	1944	0,015	10,3
2,5	70	1944	0,016	10,1
5	70	1944	0,016	9,9
7,5	70	1944	0,017	9,6
10	70	1944	0,017	9,4
12,5	70	1944	0,017	9,2
15	70	1944	0,018	9,0
17,5	70	1944	0,018	8,8
20	70	1944	0,019	8,6

Se puede observar de los resultados que todas las frecuencias se encuentran para dicha velocidad en un rango entre 10,2 y 8,6 Hz, con un promedio de 9,4 Hz.

Viscosidad del asfalto

La viscosidad de un <u>fluido</u> es una medida de su resistencia a las deformaciones graduales producidas por <u>tensiones cortantes</u> o <u>tensiones de tracción</u>. Constituye una propiedad física característica de todos los fluidos, la cual <u>emerge</u> de las <u>colisiones</u> entre las <u>partículas</u> del fluido que se mueven a diferentes velocidades, provocando una resistencia a su movimiento.

Se ha definido la viscosidad como la relación existente entre el esfuerzo cortante y el gradiente de velocidad. Esta viscosidad recibe el nombre de viscosidad absoluta o viscosidad dinámica y sus unidades más conocidas son: Poise y Pa.s (1Pa.s = 10 Poise). Otra viscosidad muy empleada en la ingeniería es la llamada viscosidad cinemática, para cuyo cálculo se divide la viscosidad dinámica entre la densidad del fluido. Sus unidades usuales son: centistokes y mm²/s (1 centistokes = 1 mm²/s).

La ecuación de predicción de módulos dinámicos de Witczack emplea la viscosidad dinámica (η) del asfalto a emplear con el nivel de envejecimiento y temperatura de interés para el diseño, en 10⁶ Poise. Por esta razón se buscó información en el Laboratorio de Carreteras de la UCSG, donde se decidió trabajar con los siguientes resultados de un residuo TFOT de un asfalto representativo AC 20 producido en la Refinería de Esmeraldas. Ver Tabla 4.3.

Tabla 4.3.

RESIDUO TFOT ASFALTO AC 20 REFINERIA ESMERALDAS						
T (°C)	η (Poise)	η (Centistokes)	log η	log (log η)		
60	11500	1156127	6,063	0,783		
100	75,30	7728	3,888	0,590		
135	7,50	791	2,898	0,462		

Variación de la viscosidad con la temperatura en el residuo RTFOT

Con estos valores se obtuvo la relación viscosidad temperatura, que permite ajustar con una línea recta los valores de temperatura (°C) con los de viscosidad cinemática (cSt o mm²-s), estos en una escala doble logarítmica. En la Figura 4.1 se presentan los resultados graficados.

Figura 4.1. Gráfico de la variación de la viscosidad con la temperatura en el residuo RTFOT

A partir de la ecuación de la línea de tendencia se pueden obtener las viscosidades a las temperaturas requeridas por el estudio, como se muestra en la Tabla 4.4.

Tabla 4.4.

z (cm)	T (⁰ C)	log (log η)	η (cSt)	η (Poises)
0,0	38,3	0,868	23.884.162	240.000
2,5	36,3	0,877	34.831.069	350.000
5.0	35.1	0.882	41.797.283	420.000
7.5	34 5	0.885	47 768 324	480,000
10.0	34.2	0.886	49 758 670	500.000
12.5	34.1	0.886	49.758.670	500.000
15.0	22.7	0,880	53 730 364	540.000
17.5	22.0	0,000	56 704 994	570.000
20.0	32.0	0,890	75 633 179	760.000

Viscosidades del residuo para las temperaturas de estudio

Características de una mezcla representativa para la predicción de módulos

Se han asumido las siguientes características para la mezcla asfáltica, correspondiente a una mezcla convencional con granulometría densa de tamaño máximo 12,5 mm (½ pulgada) de acuerdo a las exigencias del MTOP del Ecuador, (Ministerio de Obras Públicas y Comunciaciones, 2002). Los símbolos empleados son los que se fijaron en la presentación de la ecuación de predicción. Ver Tabla 4.5. Tabla 4.5.

Datos utilizados en la ecuación de predicción de Witczack

Va	4,0%
Veff	11,5%
ρ3/4	0,0%
р 3/8	15.0%
04	40.0%
0200	4.0%
ρ_{200}	4,0%

Con la información anteriormente elaborada y mostrada se procedió a calcular de acuerdo a la ecuación de predicción de módulos de Witczack, obteniéndose los resultados que se observan en la siguiente Tabla 4.6.

Tabla 4.6.

Módulos dinámicos según la ecuación de predicción de Witczack

z (cm)	T (ºC)	Hz	n (Poises)	n (Poises x 10°)	E* Witczack (MPa)
0,0	38,3	10,3	240.000	0,24	3.762
2,5	36,3	10,1	350.000	0,35	4.249
5,0	35,1	9,9	420.000	0,42	4.490
7,5	34,5	9,6	480.000	0,48	4.654
10,0	34,2	9,4	500.000	0,50	4.691
12,5	34,1	9,2	500.000	0,50	4.665

15,0	33,7	9,0	540.000	0,54	4.757
17,5	33,2	8,8	570.000	0,57	4.813
20,0	32,0	8,6	760.000	0,76	5.250

4.4. Coeficiente de Poisson

Es una medida del estrechamiento de un material elástico lineal e isótropo cuando se estira longitudinalmente y se adelgaza en las direcciones perpendiculares a la de estiramiento. El coeficiente de Poisson para una mezcla asfáltica varía dependiendo de la temperatura según la Tabla 4.7.

Tabla 4.7.

Coeficiente d	de F	Poisson	según	la	temperatura
			0		

Tempe	eratura	Coeficiente de Poisson
°F	°C	μ
≤ 0	≤ 0	0.15
0-40	0-5	0.20
40-70	5-22	0.25
70-100	22-38	0.35
100-130	38-55	0.45
≥ 130	≥ 55	0.48

Nota: "Design of New and Rehabilitated Pavement Structures". NCHRP. (2002). Part

2, Chapter 2, p.29.

4.5. Análisis mecanicista de los pavimentos estudiados

4.5.1. Introducción

Lo primero que se necesita para este tipo de análisis es aplicar un modelo de respuesta estructural, en este caso el de tipo mecanicista que utiliza el software WINJULEA. Como datos de entrada se requiere conocer los módulos dinámicos "E" (MPa)y Coeficientes de Poisson de todas las capas que integran el pavimento, así como su espesor (mm) y el tipo de contacto entre ellas (0: mucha rugosidad; 1: muy liso).

Para los datos de entrada de las cargas se considera que a partir del eje típico de 82 kN y con una presión de inflado de 0,7 MPa se tiene:

- Carga por rueda= 20500 N
- Área de contacto= 29286 mm

Los puntos en que se evaluaron las deformaciones unitarias y esfuerzos se representan de manera aproximada (hasta 1 metro) en la Figura 4.2. Todos ubicados en la superficie donde se espera que inicien este tipo de deterioros por TDC. Las coordenadas de los puntos se expresan en mm. Los resultados que se desean analizar son la deformación unitaria (STRAIN, m/m) y los esfuerzos (STRESS, MPa).

Figura 4.2. Esquema de parte de la ubicación de los puntos de control

Un ejemplo de una corrida del software WINJULEA con los datos de entrada y la salida de resultados se muestra en la Figura 4.3. Esta corresponde a la vía Durán Boliche, Calzada Sur.

📥 W i	n J U L E A	: [C:\Users\	Usuario\[Desktop\Pl	RFILES DEL V	IN JU	L	EA\1 DURAN-BOL	ICHE.lea]			- X
File	Edit Help											
e 1		3										
Input	Layers						Г	Results at Calculati	ons Points			()
	Thickness	E-Mo	dulus	PR	Slip	^			Point 1	Point 2	Point 3	<u>C</u> alculate
1	10.0	100	3762.0	0.35000	0.0000	=		X-Coord.	0.0000	0.0000	0.0000	
2	40.0	100	4249.0	0.35000	0.0000			Y-Coord.	0.0000	50.000	250.00	<u>S</u> ave
3	110.	00	4691.0	0.35000	0.0000	1		Z-Coord	0.0000	0.0000	0.0000	
4	900.	.00	151.50	0.35000	0.0000			Stress_X	0.74599	0.93928	0.75586	<u>O</u> pen
5	0.00	100	47.000	0.40000				Stress_Y	0.52123	0.75580	0.60362	
6						-		Stress_Z	0.0000	0.0000	0.0000	Clear All
	_							ShearStress_XZ	0.0000	0.0000	0.0000	Clear All
Input	Loads							ShearStress_YZ	0.0000	0.0000	0.0000	
	X-Coord.	Y-Coord.	Load	d Cont	act Area 🔺			ShearStress_XY	0.0000	0.0000	0.0000	<u>R</u> eport
1	0.0000	150.00	2	0500.	29286.			Strain_X	0.14980E-03	0.17936E-03	0.14476E-03 ≡	
2	0.0000	-150.00	2	0500.	29286.			Strain_Y	0.69148E-04	0.11352E-03	0.90131E-04	A <u>b</u> out
3								Strain_Z	-0.11790E-03	-0.15770E-03	-0.12648E-03	
4								ShearStrain_XZ	0.0000	0.0000	0.0000	Exit
5					-			ShearStrain_YZ	0.0000	0.0000	0.0000	
								ShearStrain_XY	0.0000	0.0000	0.0000	
Input	Evaluation Po	oints		Input Calcul	ation Depths-		Ц	Displt_X	0.0000	0.0000	0.0000	
<u> </u>	V Coord	V Coord			Dooth A			Displt_Y	0.0000	-0.35504E-02	-0.22482E-01	
		0.0000			0.0000			Displt_Z	0.41631	0.41995	0.38357	
	0.0000	50.000			0.0000			PrincStress_1	0.74599	0.93928	0.75586	
2	0.0000	250.000		2				PrincStress_2	0.52123	0.75580	0.60362	
3	0.0000	350.00		3				PrincStress_3	0.55511E-16	0.0000	-0.55511E-16	
4	0.0000	450.00		4				PrincStrain_1	0.14980E-03	0.17936E-03	0.14476E-03	
5	0.0000	500.00		0				PrincStrain_2	0.69148E-04	0.11352E-03	0.90131E-04 🚽	
L	3.0000	300.00	-	0	*			<			P.	

Figura 4.3. Ejemplo de entrada de datos y respuesta obtenida con el WINJULEA

4.5.2. Vía "Durán – Boliche". Calzada Sur

Características de las capas. Ver Tabla 4.8.

Tabla 4.8.

Pavimento existente en vía "Durán - Boliche" Calzada Sur

Eb 11(0 0 1 0 10 1 km 11,3 u 10,1 (2002 u 2003)							
CAPA	H (cm)	E (MPa)	Coef. Poisson				
CA	1,0	3762	0,35				
CA	4,0	4249	0,35				
СА	11,0	4691	0,35				
BG y SB	90,0	151,5	0,35				

ESTRUCTURA km 11,3 a 16,1 (2002 a 2009)

SR	XXX	47,0	0,4

Resultados obtenidos del WINJULEA. Ver Tabla 4.9.

Tabla 4.9.

Resumen de resultados. "Durán - Boliche" Calzada Sur km 11,3 a 16,1 (2002 a 2009)

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.14980E-03	0.17936E-03	0.14476E-03	0.90894E-04	0.63083E-04	0.53872E-04	0.39613E-04
STRAIN Y	0.69148E-04	0.11352E-03	0.90131E-04	0.16196E-05	-0.13528E-04	-0.18412E-04	-0.21869E-04
STRAIN Z	-0.11790E-03	-0.15770E-03	-0.12648E-03	-0.49815E-04	-0.26683E-04	-0.19094E-04	-0.95545E-05
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.74599	0.93928	0.75586	0.39211	0.25015	0.20333	0.13701
STRESS Y	0.52123	0.75580	0.60362	0.14333	0.36660E-01	0.19014E-02	-0.34316E-01
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Y (mm)=	700	800	900	1000	1200	1500	
STRAIN X	0.30317E-04	0.22761E-04	0.18506E-04	0.14647E-04	0.99127E-05	0.61660E-05	
STRAIN Y	-0.22248E-04	-0.19177E-04	-0.17277E-04	-0.14330E-04	-0.96908E-05	-0.55607E-05	
STRAIN Z	-0.43448E-05	-0.19297E-05	-0.66183E-06	-0.17099E-06	-0.11950E-06	-0.32593E-06	
							-
Y (mm)=	700	800	900	1000	1200	1500	
STRESS X	0.96591E-01	0.68805E-01	0.53415E-01	0.41294E-01	0.27956E-01	0.18091E-01	
STRESS Y	-0.49890E-01	-0.48063E-01	-0.46302E-01	-0.39456E-01	-0.26672E-01	-0.14588E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

4.5.3. Vía "Durán - Boliche". Calzada Norte

Características de las capas. Ver Tabla 4.10.

Tabla 4.10.

Pavimento existente en vía "Durán - Boliche" Calzada Norte

ESTRUCTURA km 6,8 a 16,1 (2002 a 2007 - 09)

	/	/ (
CAPA	H (cm)	E (MPa)	Coef. Poisson
СА	4.10.	3762	0,35
СА	4,0	4249	0,35
СА	12,0	4691	0,35
BG y SB	120,0	152,5	0.35

1		I	
SR	XXX	47,0	0,40

Resultados obtenidos del WINJULEA. Ver Tabla 4.11.

Tabla 4.11.

Resumen de resultados. "Durán - Boliche" C. Norte km 6,8 a 11,3 (2002 a 2009) y km 11,3 a 16,1

(2002 a 2007)

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.47015E-04	0.77176E-04	0.62922E-04	0.27187E-04	0.15595E-04	0.13094E-04	0.95970E-05
STRAIN Y	0.15225E-05	0.45159E-04	0.48842E-04	-0.94436E-05	-0.55039E-05	-0.49909E-05	-0.29443E-05
STRAIN Z	-0.26135E-04	-0.65872E-04	-0.60181E-04	-0.95541E-05	-0.54335E-05	-0.43634E-05	-0.35822E-05
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.20385	0.39863	0.34305	0.10238	0.58599E-01	0.48649E-01	0.36726E-01
STRESS Y	0.77073E-01	0.30941	0.30381	0.30793E-03	-0.19602E-03	-0.17485E-02	0.17778E-02
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Y (mm)=	700	800	900	1000	1200	1500	
STRAIN X	0.81711E-05	0.63346E-05	0.62367E-05	0.54096E-05	0.45496E-05	0.36923E-05	
STRAIN Y	-0.21006E-05	-0.93676E-08	-0.73209E-07	0.61746E-06	0.11207E-05	0.11110E-05	
STRAIN Z	-0.32688E-05	-0.34059E-05	-0.33188E-05	-0.32453E-05	-0.30532E-05	-0.25864E-05	
							-
Y (mm)=	700	800	900	1000	1200	1500	
STRESS X	0.31879E-01	0.27144E-01	0.26628E-01	0.24118E-01	0.21186E-01	0.17496E-01	
STRESS Y	0.32555E-02	0.94650E-02	0.90443E-02	0.10764E-01	0.11631E-01	0.10303E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

4.5.4. Vía "Km26 – Puerto Inca"

Características de las capas. Ver Tabla 4.12.

Tabla 4.12.

Pavimento existente en vía "Km 26 – Puerto Inca"

L5 I KO C I O KI I KII 5,0 a 10,9 (2000 a 2005)							
САРА	H (cm)	E (MPa)	Coef. Poisson				
СА	1,0	3762	0,35				
СА	5,0	4249	0,35				
СА	14,0	4665	0,35				
BG y SB	52,0	134,4	0,35				
SR	XXX	30,3	0,45				

САРА	H (cm)	E (MPa)	Coef. Poisson
СА	1,0	3762	0,35
СА	4,0	4249	0,35
СА	20,0	4757	0,35
BG y SB	52,0	134,4	0,35
SR	xxx	30,3	0,45

ESTRUCTURA km 5,6 a 10,9 (2005 a 2010)

Resultados obtenidos del WINJULEA. Ver tablas 4.13. y 4.14.

Tabla 4.13.

Resumen de resultados. "Km 26 – Puerto Inca" km 5,6 a 10,9 (2005 a 2010)

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.12719E-03	0.15696E-03	0.13193E-03	0.87247E-04	0.66299E-04	0.59309E-04	0.47693E-04
STRAIN Y	0.69135E-04	0.11203E-03	0.93941E-04	0.18747E-04	0.67411E-05	0.84794E-06	-0.63514E-05
STRAIN Z	-0.10571E-03	-0.14484E-03	-0.12162E-03	-0.57074E-04	-0.39329E-04	-0.32392E-04	-0.22261E-04
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.64902	0.84103	0.70658	0.40217	0.29435	0.25554	0.19494
STRESS Y	0.48724	0.71581	0.60071	0.21129	0.12838	0.92629E-01	0.44334E-01
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Y (mm)=	700	800	900	1000	1200	1500]
STRAIN X	0.39471E-04	0.32081E-04	0.27480E-04	0.23002E-04	0.16748E-04	0.10876E-04	
STRAIN Y	-0.11002E-04	-0.11910E-04	-0.13396E-04	-0.13159E-04	-0.12080E-04	-0.99926E-05	
STRAIN Z	-0.15330E-04	-0.10861E-04	-0.75835E-05	-0.53001E-05	-0.25131E-05	-0.47545E-06	
Y (mm)=	700	800	900	1000	1200	1500	
STRESS X	0.15271	0.11967	0.97710E-01	0.78868E-01	0.53673E-01	0.31631E-01	
STRESS Y	0.12060E-01	-0.29224E-02	-0.16198E-01	-0.21899E-01	-0.26661E-01	-0.26521E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Tabla 4.14.

Resumen de resultados. "Km 26 – Puerto Inca" km 5,6 a 10,9 (2005 a 2010)

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.93183E-04	0.12298E-03	0.10565E-03	0.68149E-04	0.53151E-04	0.48508E-04	0.40463E-04
STRAIN Y	0.50347E-04	0.92262E-04	0.82866E-04	0.18546E-04	0.12684E-04	0.81652E-05	0.17638E-05
STRAIN Z	-0.77286E-04	-0.11590E-03	-0.10151E-03	-0.46682E-04	-0.35449E-04	-0.30517E-04	-0.22738E-04
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.47504	0.66570	0.57730	0.31999	0.24690	0.22022	0.17612
STRESS Y	0.35567	0.58008	0.51380	0.18177	0.13413	0.10779	0.68277E-01
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	-	-		-	-		
Y (mm)=	700	800	900	1000	1200	1500	
STRAIN X	0.34680E-04	0.28961E-04	0.25516E-04	0.21843E-04	0.16534E-04	0.11228E-04	
STRAIN Y	-0.32788E-05	-0.50045E-05	-0.74410E-05	-0.81477E-05	-0.87043E-05	-0.82988E-05	
STRAIN Z	-0.16908E-04	-0.12900E-04	-0.97328E-05	-0.73742E-05	-0.42158E-05	-0.15771E-05	
							_
Y (mm)=	700	800	900	1000	1200	1500	
STRESS X	0.14376	0.11665	0.98227E-01	0.81418E-01	0.57822E-01	0.35683E-01	
STRESS Y	0.37981E-01	0.22001E-01	0.63866E-02	-0.21555E-02	-0.12508E-01	-0.18731E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

4.5.5. Vía "Durán – Jujan"

Características de las capas. Ver Tabla 4.15.

Tabla 4.15.

Pavimento existente en vía "Durán – Jujan"

-			
CAPA	H (cm)	E (MPa)	Coef. Poisson
CA	1,0	3762	0,35
СА	3,0	4249	0,35
СА	19.0	4757	0.35
BG v SB	58.0	175.0	0.35
SR	XXX	28,0	0,45

ESTRUCTURA km 31,5 a 34,1 (2000 a 2006)

Resultados obtenidos del WINJULEA. Ver Tabla 4.16.

Tabla 4.16.

Resumen de resultados.	"Durán – Jujan"	' km 31,5 a 34,1	(2000 a 2006)
		,	

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.97396E-04	0.12699E-03	0.10791E-03	0.69010E-04	0.52768E-04	0.47685E-04	0.39086E-04
STRAIN Y	0.51477E-04	0.93196E-04	0.82332E-04	0.15637E-04	0.89457E-05	0.44993E-05	-0.12829E-05
STRAIN Z	-0.80163E-04	-0.11856E-03	-0.10244E-03	-0.45579E-04	-0.33230E-04	-0.28099E-04	-0.20356E-04
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.49480	0.68429	0.58617	0.31932	0.23965	0.21119	0.16564
STRESS Y	0.36684	0.59010	0.51489	0.17059	0.11753	0.90842E-01	0.53149E-01
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Y (mm)=	700	800	900	1000	1200	1500	
STRAIN X	0.33057E-04	0.27283E-04	0.23893E-04	0.20339E-04	0.15339E-04	0.10486E-04	
STRAIN Y	-0.54841E-05	-0.63898E-05	-0.81064E-05	-0.82220E-05	-0.79645E-05	-0.70585E-05	
STRAIN Z	-0.14847E-04	-0.11250E-04	-0.85005E-05	-0.65245E-05	-0.39708E-05	-0.18457E-05	
							_
Y (mm)=	700	800	900	1000	1200	1500	
STRESS X	0.13349	0.10738	0.90270E-01	0.74859E-01	0.53809E-01	0.34365E-01	
STRESS Y	0.26091E-01	0.13544E-01	0.10983E-02	-0.47303E-02	-0.11129E-01	-0.14526E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

4.5.6. Vía "Guayaquil – El Empalme"

Características de las capas. Ver Tabla 4.17.

Tabla 4.17.

Pavimento existente en vía "Guayaquil – El Empalme"

CAPA	H (cm)	E (MPa)	Coef. Poisson
СА	1,0	3762	0,35
СА	3,0	4249	0,35
СА	14,0	4691	0,35
BG	20,0	150,9	0,35
SB	27,0	88,6	0,35
SR	XXX	45,0	0,40

ESTRUCTURA km 60,0 a 62,2 y 69,2 a 71,0 (2000 a 2007)

САРА	H (cm)	E (MPa)	Coef. Poisson
СА	1,0	3762	0,35
СА	6,5	4249	0,35
СА	14,5	4757	0,35
BG	20,0	177,3	0,35
SB	27,0	91,8	0,35
SR	xxx	53,5	0,40

ESTRUCTURA km 62,2 a 69,2 (2000 a 2007)

<u>Resultados obtenidos del WINJULEA</u>. Ver tablas 4.18. y 4.19.

Tabla 4.18.

Resumen de resultados. "Guayaquil – El Empalme" km 60,0 a 62,2 y km 69,2 a 71,0 (2000 a 2007)

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.14404E-03	0.17346E-03	0.14383E-03	0.95128E-04	0.70644E-04	0.62339E-04	0.48813E-04
STRAIN Y	0.77289E-04	0.12007E-03	0.97838E-04	0.15531E-04	0.41033E-06	-0.59291E-05	-0.13183E-04
STRAIN Z	-0.11918E-03	-0.15805E-03	-0.13013E-03	-0.59586E-04	-0.38260E-04	-0.30374E-04	-0.19185E-04
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.73352	0.92380	0.76345	0.43114	0.30348	0.25836	0.18949
STRESS Y	0.54749	0.77503	0.63527	0.20933	0.10776	0.68121E-01	0.16728E-01
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Y (mm)=	700	800	900	1000	1200	1500	
STRAIN X	0.39339E-04	0.31117E-04	0.25966E-04	0.21137E-04	0.14556E-04	0.87048E-05	
STRAIN Y	-0.17406E-04	-0.17685E-04	-0.18455E-04	-0.17482E-04	-0.14989E-04	-0.11160E-04	
STRAIN Z	-0.11810E-04	-0.72325E-05	-0.40440E-05	-0.19681E-05	0.23312E-06	0.13219E-05	
Y (mm)=	700	800	900	1000	1200	1500	
STRESS X	0.14254	0.10687	0.83627E-01	0.64387E-01	0.39914E-01	0.20574E-01	
STRESS Y	-0.15596E-01	-0.29127E-01	-0.40160E-01	-0.43232E-01	-0.42420E-01	-0.34782E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Tabla 4.19.

Resumen de resultados. "Guayaquil – El Empalme" km 62,2 a 69,2 (2000 a 2007)

Y (mm)=	0	50	250	350	450	500	600
STRAIN X	0.10584E-03	0.13583E-03	0.11496E-03	0.73893E-04	0.56160E-04	0.50415E-04	0.40670E-04
STRAIN Y	0.55361E-04	0.98215E-04	0.84540E-04	0.15493E-04	0.67365E-05	0.14796E-05	-0.53360E-05
STRAIN Z	-0.86800E-04	-0.12602E-03	-0.10742E-03	-0.48131E-04	-0.33867E-04	-0.27943E-04	-0.19026E-04
Y (mm)=	0	50	250	350	450	500	600
STRESS X	0.53682	0.72969	0.61969	0.34004	0.25088	0.21836	0.16635
STRESS Y	0.39616	0.62487	0.53493	0.17730	0.11315	0.81992E-01	0.38150E-01
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Y (mm)=	700	800	900	1000	1200	1500	
STRAIN X	0.33725E-04	0.27226E-04	0.23264E-04	0.19258E-04	0.13656E-04	0.84154E-05	
STRAIN Y	-0.10105E-04	-0.11281E-04	-0.13041E-04	-0.13019E-04	-0.12131E-04	-0.98624E-05	
STRAIN Z	-0.12719E-04	-0.85856E-05	-0.55046E-05	-0.33595E-05	-0.82123E-06	0.77917E-06	
				-			-
Y (mm)=	700	800	900	1000	1200	1500]
STRESS X	0.12942	0.99795E-01	0.80168E-01	0.63028E-01	0.40344E-01	0.21280E-01	
STRESS Y	0.72831E-02	-0.75120E-02	-0.21002E-01	-0.26918E-01	-0.31517E-01	-0.29655E-01	
STRESS Z	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

4.5.7. Deformaciones unitarias máximas obtenidas en las vías

A continuación se puede apreciar en la Tabla 4.20.1a recopilación de los valores de deformaciones máximas a tracción (ɛt)en cada uno de los tramos estudiados. Dichos valores se obtuvieron para ciertas posiciones críticas en la dirección Y, así como también en la dirección Z. Precisamente en esta última dirección las deformaciones por tracción fueron siempre mayores que en Y, ocurriendo en todos los casos en la posición Y igual a 50 mm. En la dirección X no se obtuvieron deformaciones por tracción.

Tabla 4.20.

Deformaciones i	unitarias	máximas	obtenidas	en el	WINJULEA
-----------------	-----------	---------	-----------	-------	----------

NO	X7É A	Dire	cción Y	Dirección Z	
NO.	VIA	Et máxima	Posición, mm	Et máxima	Posición, mm
1	"Durán - Boliche" Calzada Sur km 11,3 a 16,1 (2002 a 2009)	-0.22248E-04	700	-0.15770E-03	50
2	"Durán - Boliche" Calzada Norte km 6,8 a 11,3 (2002 a 2009) y km 11,3 a 16,1 (2002 a 2007)	-0.94436E-05	350	-0.65872E-04	50
2	"Km 26 – Puerto Inca" km 5,6 a 10,9 (2000 a 2005)	-0.13396E-04	900	-0.14484E-03	50
3	Km 26 – Puerto Inca'' km 5,6 a 10,9 (2005 a 2010)	-0.87043E-05	1200	-0.11590E-03	50
4	"Durán – Jujan" km 31,5 a 34,1 (2000 a 2006)	-0.82220E-05	1000	-0.11856E-03	50
5	"Guayaquil – El Empalme" km 60,0 a 62,2 y km 69,2 a 71,0 (2000 a 07)	-0.18455E-04	900	-0.15805E-03	50
	"Guayaquil – El Empalme" km 62,2 a 69,2 (2000 a 2007)	-0.13041E-04	900	-0.12602E-03	50

4.5.8. Repeticiones permisibles para el fallo por TDC de acuerdo a AASHTO 2008

A partir de las ecuaciones de predicción presentadas en el numeral 2.5 de este trabajo, se procedió a realizar el cálculo de las repeticiones permisibles de ejes equivalentes de 82 KN para que se produzca el fallo por TDC.

En la Tabla 4.21. se muestran los resultados obtenidos. En todos los casos se utilizó para la capa asfáltica un módulo de 3762 MPa, utilizado para la capa superior en el análisis realizado con el WINJULEA.

Tabla 4.21.

Repeticiones permisibles calculadas

VÍA	εt má	xima	H (cm)	I (cm) Repet. permisible	
VIA	Y	Z		Y	Z
"Durán - Boliche" Calzada Sur km 11,3 a 16,1 (2002 a 2009)	-0.22248E-04	-0.15770E-03	16	143.688.161	59.701
"Durán - Boliche" Calzada Norte km 6,8 a 11,3 (2002 a 2009) y km 11,3 a 16,1 (2002 a 2007)	-0.94436E-05	-0.65872E-04	17	3.821.557.499	1.736.097
"Km 26 – Puerto Inca" km 5,6 a 10,9 (2000 a 2005)	-0.13396E-04	-0.14484E-03	20	1.021.507.385	74.602
Km 26 – Puerto Inca'' km 5,6 a 10,9 (2005 a 2010)	-0.87043E-05	-0.11590E-03	25	4.982.406.858	179.817
"Durán – Jujan" km 31,5 a 34,1 (2000 a 2006)	-0.82220E-05	-0.11856E-03	23	6.294.705.586	165.303
"Guayaquil – El Empalme" km 60,0 a 62,2 y km 69,2 a 71,0 (2000 a 07)	-0.18455E-04	-0.15805E-03	18	262.195.665	53.791
"Guayaquil – El Empalme" km 62,2 a 69,2 (2000 a 2007)	-0.13041E-04	-0.12602E-03	22	1.020.165.634	129.740

Si se comparan estos resultados con las variaciones de los deterioros TDC (%) versus ESAL para las diferentes vías, mostradas en el numeral 3.4 de este trabajo, se aprecia que no existe una relación entre ambas. Para la dirección Y todas las repeticiones permisibles pueden considerarse ilimitadas, y en la dirección Z son extremadamente bajas. Incluso para la vía Durán Boliche calzada Norte, que muestra para la dirección Z un valor un poco mayor (1,7 millones), este no guarda relación con el procesado para esta vía.

CAPITULO 5

5. CONCLUSIONES Y RECOMENDACIONES

5.1.Conclusiones

A partir de los análisis realizados a los resultados de las evaluaciones de daños en las vías concesionadas del Guayas, entre los años 2000 y 2010, los que permitieron seleccionar algunas para este estudio, pudo constatarse que los daños más generalizados en la región Costa del Ecuador son los fallos por fatiga top down. Esta situación queda validada por los propios trabajos de mantenimiento y rehabilitación ejecutados, donde los deterioros por fatiga en capas asfálticas gruesas (mayores a 15 cm) se solucionaron y se solucionan generalmente con la realización de un fresado con profundidad 5 cm y posteriormente el bacheo correspondiente, o bien la colocación de una nueva capa en dependencia del área fresada.

El procesamiento de la información permitió determinar las relaciones existentes entre las cargas actuantes, a través del número de ejes simples equivalentes de 82 kN (ESAL), con los porcentajes de áreas deterioradas por TDC en los diferentes tramos de vías seleccionados. La línea de tendencia general obtenida presenta un coeficiente de determinación R² del 74.7%, que puede considerarse un valor aceptable para este tipo de análisis ya que existen muchas variables interrelacionadas.

En general se nota un impacto considerable de este tipo de deterioro en nuestros pavimentos flexibles. De acuerdo a la línea de tendencia, para 5 millones de ESAL la densidad de deterioros sería de 11% y para 6 millones de 17%. Estos valores son llamativos ya que una vía de tráfico pesado en nuestro país puede alcanzar, como referencia, 1 millón de ESAL por año. Por otra parte, toda la información procesada corresponde a vías concesionadas donde se aplican controles rigurosos de calidad a

materiales y procedimientos constructivos, lo que permitiría suponer que el impacto de este daño pudiera ser mucho mayor en otros casos.

La comparación de los resultados anteriores en los tramos estudiados, con las repeticiones permisibles para el fallo por TDC obtenidas con la ecuación de predicción de AASHTO 2008, nos indica que no existe relación alguna entre los dos tipos de análisis. La predicción en la dirección Y origina repeticiones permisibles que pueden considerarse ilimitadas y en la dirección Z extremadamente bajas, con excepción de la Vía Duran Boliche calzada Norte donde su valor no guarda relación con el de las demás vías procesadas.

El uso del software WINJULEA para el cálculo de las deformaciones unitarias, mostró que en las vías con mayor espesor de capa asfáltica, 23 y 25 cm, sus deformaciones unitarias máximas, ɛt, se ubican en los puntos más alejados, en el sentido Y, respecto al punto de aplicación de la carga, siendo 1000 mm para la vía de espesor de 23 cm y 1200 mm para la vía de 25 cm de espesor.

5.2. Recomendaciones

- Los organismos encargados de la administración de las carreteras, ya sean organismos públicos o la empresa privada por medio de concesiones, deben de prestar mayor atención al comportamiento de las vías a través de evaluaciones periódicas sistemáticas de control de daños por alguna metodología reconocida.
- Perfeccionar los análisis mecanicistas que permitan apoyar el diseño de pavimentos de carreteras por AASHTO 93, que es el empleado en Ecuador. Esto es posible de realizar ajustando ciertos coeficientes en las ecuaciones de

predicción de fatiga tipo BTU o TDC de acuerdo a los propios criterios de AASHTO 2008.

- Para atenuar de cierta forma los deterioros por TDC puede recomendarse en la práctica:
 - Evitar la segregación de los áridos en las mezclas asfálticas especialmente en el proceso de tendido en obra.
 - Tratar de disminuir el envejecimiento del asfalto, siendo consecuente con las temperaturas de trabajo y uso de aditivos.
 - Realizar un mayor control de la calidad y procesos constructivos de las vías.

CAPITULO 6

6. REFERENCIA

- A. Braham, Pterson P., & Buttlar W. (2009). Mixed-mode cracking in asphalt concrete. Advanced Testing and Characterization of Bituminous Material .Vol. 2, pp. 785-793.
- AASHTO. (1993). *Guide for Design of Pavemen Structure*. Washington. Washington, D.C.
- AASHTO. (2003). Standard Method of Test for Determining Dynamic Modulus of Hot-Mix. En A. T. 62-03, Standard Method of Test for Determining (p. 2).
 Washington D.C: American Association of State Highway and Transportation Officials.
- AASHTO. (2008). *Mechanistic-Empirial Pavement Design Guide*. A Manual of Practice, Interim Edition, American Association of State Highway and Transportation OfficialsWashington, D.C.
- Andrade, N., & Franco, F. (2019). Los pavimentos compuestos como alternativa constructiva para vías de tráfico pesado. Tesis, Universidad Católica Santiago de Guayaquil, Guayaquil.
- ANT. (2018). Reglamento general para la Aplicacion de la Ley Orgánica de Transporte Terrestre, Tránsito y Seguridaqad Vial.Retrieved from Agenvia Nacional de Transito.
- ASTM. D6433-03. Standard Practice for Highway and Parking Pavement Condition Index Surveys, ASTM International, West Conshohocken, PA, 2003, Recuperado: www.astm.org

- Baek, C., Roque, R., Zou, J., Kim, Y., Thirunavukkarasu, S., Underwood, B., & Guddati, M. (2012). Top-down cracking prediction tool fot hot mix asphalt pavement. A. Scarpas, N. Kringos, & A. Al-Qadi (Ed.), 7th RILEM International Conference on Cracking in Pavement. RILEM Bookseries.4, pp. 465-475. Dordrecht: Springer.
- Baladi, G., Schorsch, M., & Svasdisant, T. (2003). Determining the causes of topdown cracks in bituminous Pavements. Final Report MDOT - PRCE - MSU -2003 - 110. Michigan Departament of Transportation.
- Bemsalen, A. (2000). Finite element modeling of fully flexible pavement: surface cracking and wheel interaction. *Proceeding of 2nd international symposium* on 3D finite element for pavement analysis, design and research, pp. 103-113.
- Del Val Melús, M. Á., & Medina, J. G. (2010). Sobre las enfermedades de los pavimentos asfálticos. Recuperado el 20 de junio de 2020, de Universidad Politécnica de Madrid.
- Dinegdae, Y. H., Onifade, I., Jelagin, D., & Birgisson, B. (2015). Mechanic based top-down fatigue cracking initiation prediction framework for asphalt pavement. *Road Materials and Pavement Design* (pp. 907-927).
- Eddyhbrs. (2012). Pavimentos concreto asfáltico: Ventajas de bases de asfalto [Imagen en un blog]. Recuperado de https://www.ingenierocivilinfo.com/2012/03/pavimentos-concreto-asfalticoventajas.html
- Emery, J. J. (2007). Mitigation of Asphalt Pavement Top-down Cracking. The Assessment and Rehabilitation of the Condition of Materials Session. The

Annual Conference of the Transportation Association of Canada, Charlottetown, Canada

- Freitas, E. F., Pereira, P. A., Picado-Santos, L., & Papagiannakis, A. (2005). Construction quality, temperature and rutting effect on top-down cracking initiation. *Transportation Research Record: Journal of the Transportation Research Board* (pp. 174-182).
- García, M. (2011). Evaluación de la profunidad de las fisuración superficial descendente en pavimentos asfálticos mediante técnica de ultra sonido.
 Validación teórico-práctica y modelos. (Tesis doctoral). Universidad Politécnica de Madrid, Madrid, España.
- Gerritsen, A.H., Van Gurp, C., Van Ver Heide, J., Molenaar, A., & Pronk, A. (1987). Prediction and prevention of surface cracking in asphaltic pavements. *Paper present at the6th International Conference on structural design of asphalt pavement*. University of Michigan, Ann Arbor, Michigan.
- Glover, C. J., Martin, A. E., Han, R., Prapaitrakul, N., Chowdhury, A., Xin, J., & Lawrence, J. (2014). Evaluation of binder aging and its influence in aging of hot mix asphalt concrete. Technical report, Texas A&M Transportation Intitute, College Station, Austin, Texas.
- Gu, F., Luo, X., West, R. C., Taylor, A. J., & Moore, N. D. (2018). Energy-based crack initiation model for load-related top-down cracking in asphalt pavement. *Construction and Building Materials* (pp. 587-597).
- Ling, M., Luo, X., Fan, G., & Robert , L. L. (2017). Time-temperature-aging-depth shift functions for dynamic modulus. *Construction and Building Materials* (pp. 943-951).

- Lytton, R. L., Uzan, J., Fernando, E. G., Roque, R., Hiltunes, D., & Stoffels, S. M. (1993). Development and validation of performance prediction models and specifications for asphalt binders and paving mixes SHRP A-357. Strategyc Highway Research Program, National Research Council, Washington, DC.
- Ministerio de Obras Públicas y Comunciaciones. (2002). *Especificaciones Generales para la Construcción de caminos y Puentes*. Obtenido de Obraspúblicas.gob.ec.
- NCHRP. (2002). Design of New and Rehabilitated Pavement Structures, 2002 Design Guide. Champaign, Illinois.
- Nobakht, M., Sakhaeifar, M. S., & Newcomb, D. E. (2017). Selection of Structural Overlays Using Asphalt Mixture Performance. *Journal of Materials in Civil Engineering* (29).
- Proyecto Fenix. (2008). Pavimentos de larga duración. Guía de fisuración descendente. España.
- Rahman , M. S., Podolsky, J. H., Williams, R. C., & Scholz, T. (2017). A study of top-down cracking in the state of Oregon. *Road Materials and Pavement Design* (pp. 1771-1795).
- Roque, R., Zou, J., Kim, Y., Baek, C., Thirunavukkarasu, S., Underwood, B., & Guddati, M. (2010). Top-Down Cracking of Hot-Mix Asphalt Layers: Models for Initiation and Propagation.NCHRP Project 1-42A
- Shen, S., Shang, W., Shen, L., & Huang, H. (2016). A statistical based framework for predicting field cracking performance of asphalt pavements: Application to top-down cracking prediction. *Construction and Building Materials* (pp. 226-234).

- Valdés, Pérez, & Calabi. (2012). Fisuración en pavimentos asfálticos y sus mecanismos de deterioro. Revista Científica Tecnológica Departamento Ingeniería de Obras Civiles RIOC. (1), pp. 26-36.
- Wen, H., & Bhusal, S. (2015). Development of Phenomenological Top-Down Cracking Initiation Model for Mechanistic–Empirical Pavement Design. *Transportation Research Record: Journal of the Transportation Research Board* (2474), pp. 12-18.
- Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. *Road Materials and Pavement Design (Sup4: Papers from the 92nd Association of Asphalt Paving Technologists' Annual Meeting*, (pp. 405-427).

DECLARACIÓN Y AUTORIZACIÓN

Yo, Naranjo Canales Walter Barnye, con C.C: # 0919859769 autor/a del trabajo de titulación: "AGRIETAMIENTO POR FATIGA TOP-DOWN EN PAVIMENTOS ASFÁLTICOS" previo a la obtención del título de Ingeniero Civil en la Universidad Católica de Santiago de Guayaquil.

1.- Declaro tener pleno conocimiento de la obligación que tienen las instituciones de educación superior, de conformidad con el Artículo 144 de la Ley Orgánica de Educación Superior, de entregar a la SENESCYT en formato digital una copia del referido trabajo de titulación para que sea integrado al Sistema Nacional de Información de la Educación Superior del Ecuador para su difusión pública respetando los derechos de autor.

2.- Autorizo a la SENESCYT a tener una copia del referido trabajo de titulación, con el propósito de generar un repositorio que democratice la información, respetando las políticas de propiedad intelectual vigentes.

Guayaquil, 29 de agosto de 2020

f._____

Nombre: Naranjo Canales Walter Barnye

C.C: 0919859769

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS/TRABAJO DE TITULACIÓN

TEMA Y SUBTEMA:	"AGRIETAMIENTO POR FATIGA TOP-DOWN EN PAVIMENTOS ASFÁLTICOS"				
AUTOR(ES)	Naranjo Canales Walter Barnye				
REVISOR(ES)/TUTOR(ES)	REVISOR(ES)/TUTOR(ES) Ing. Vila Romaní, Rolando PhD.				
INSTITUCIÓN:	Universidad Católica de Santiago	de Guayaquil			
FACULTAD:	Facultad de Ingeniería				
CARRERA:	Ingeniería Civil				
TITULO OBTENIDO:	Ingeniero Civil				
FECHADEPUBLICACIÓN:	29 de agosto del2020	No. DE 87			
ÁREAS TEMÁTICAS:	Pavimentos, carreteras, asfaltos				
PALABRAS CLAVES/	/ capa superficial, modos de deterioro, mecanismo de fallo, tipo				
KEYWORDS:	agrietamiento, pavimento asfáltic	0			

RESUMEN/ABSTRACT: En los últimos años a nivel internacional se le está prestando atención a un tipo de agrietamiento en los pavimentos asfálticos asociado a las cargas y que de hecho son generados por un mecanismo de fatiga que producen grietas que se desarrollan de la superficie hacia abajo, es decir, el proceso inverso a la fatiga convencional tipo piel de cocodrilo. Precisamente, el objetivo de este trabajo es estudiar dicho fenómeno del agrietamiento por fatiga tipo "top-down" mediante el análisis de información actualizada y estudios de casos particulares de pavimentos en vías principales, para hacer valoraciones sobre el efecto de los factores involucrados y métodos de predicción. Para cumplir dicho objetivo se analizaron los resultados de evaluaciones de daños en carreteras concesionadas en la provincia Guayas del Ecuador, entre 2000 y 2010, realizadas mediante el sistema PAVER. En la investigación, inicialmente se realiza una revisión del contexto en el que se desarrolla este tipo de fallo, presentando los principales agentes causantes: segregación de los agregados, el envejecimiento del asfalto, el tránsito y la incidencia de las llantas propiamente; además de una revisión de información actualizada sobre investigaciones recientes.Como resultado principal se han encontrado relaciones entre las cargas actuantes, a través del número de ejes simples equivalentes de 82 kN con los porcentajes de área deterioradas por fatiga top-down en las diferentes vías. La línea de tendencia general obtenida presenta un coeficiente de determinación R² del 74.7%. Por otra parte, la comparación de estos resultados con las repeticiones permisibles para este tipo de fallo obtenidas con la ecuación de predicción de AASHTO 2008, nos indica que no existen coincidencias entre ambas.

ADJUNTO PDF:	🖾 SI		□ NO
CONTACTO CON	Teléfono:	+593-	E mail: whoarania@outlook.com
AUTOR/ES:	99974730	5	E-man: woharanjo@outlook.com
CONTACTO CON LA	Nombre: Clara Glas Cevallos		
INSTITUCIÓN	Teléfono: +593-984616792		
(COORDINADOR DEL	E mailualara glag@au uasg adu aa		
PROCESO UTE)::	E-man.clara.glas@cu.ucsg.		g.euu.ec
SECCIÓN PARA USO DE BIBLIOTECA			
Nº. DE REGISTRO (en base a datos):			
Nº. DE CLASIFICACIÓN:			
DIRECCIÓN URL (tesis en la	a web):		