

TEMA:

Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión Sistemática

AUTORA:

Coronado Rivas, Elena Cristina

Trabajo de titulación previo a la obtención del título de Odontóloga

TUTOR:

Cabrera Dávila, María José

Guayaquil, Ecuador

9 de marzo del 2021

CERTIFICACIÓN

Certificamos que el presente trabajo de titulación fue realizado en su totalidad por **Coronado Rivas, Elena Cristina**, como requerimiento para la obtención del título de **Odontóloga**.

TUTORA

f. _____ Dávila, María José

DIRECTOR DE LA CARRERA

f. _____ Bermúdez Velásquez, Andrea Cecilia.

Guayaquil, 9 de marzo del año 2021

DECLARACIÓN DE RESPONSABILIDAD

Yo, Coronado Rivas, Elena Cristina

DECLARO QUE:

El Trabajo de Titulación: Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión Sistemática, previo a la obtención del título de Odontología, ha sido desarrollado respetando derechos intelectuales de terceros conforme las citas que constan en el documento, cuyas fuentes se incorporan en las referencias o bibliografías. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance del Trabajo de Titulación referido.

Guayaquil, 9 de marzo del año 2021

LA AUTORA

Coronado Rivas, Elena Cristina

Elena Coronado F

AUTORIZACIÓN

Yo, Coronado Rivas, Elena Cristina

Autorizo a la Universidad Católica de Santiago de Guayaquil a la **publicación** en la biblioteca de la institución del Trabajo de Titulación, **Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión Sistemática**, cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.


Guayaquil, 9 de marzo del año 2021

LA AUTORA

Coronado Rivas, Elena Cristina

f. Elena Coronado R

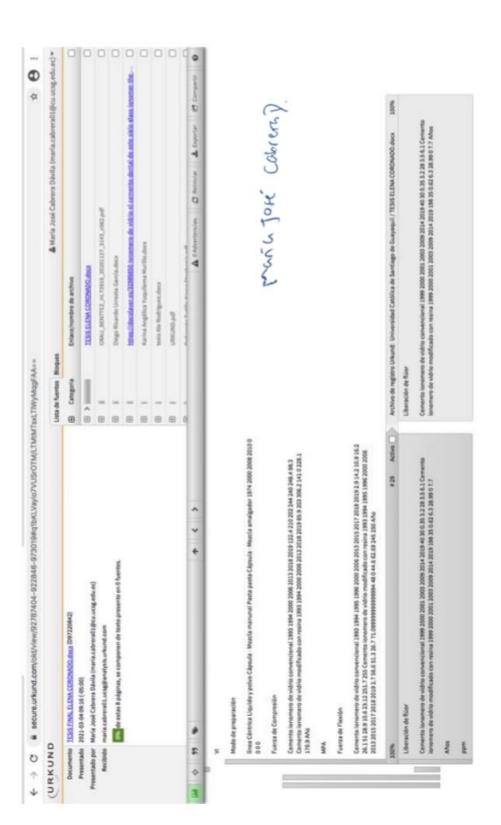
REPORTE URKUND

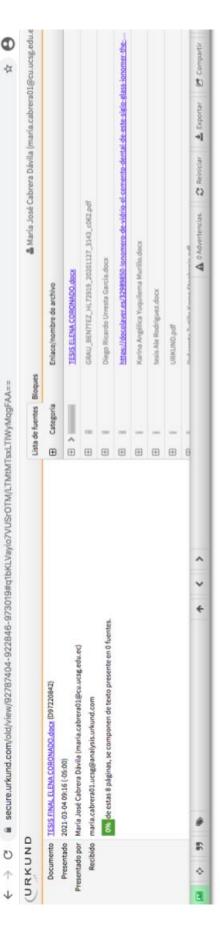
Urkund Analysis Result

Analysed Document: TESIS FINAL ELENA CORONADO.docx (D97220842)

Submitted: 3/4/2021 3:16:00 PM

Submitted By: maria.cabrera01@cu.ucsg.edu.ec


Significance: 0 %


Sources included in the report:

Instances where selected sources appear:

0

Maria Joté Cabrera ?

"Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión Sistemática"

"Evolution of glass ionomer cements in pediatric dentistry. Systematic Review"

Elena Cristina Coronado Rivas), Maria José Cabrera Dávila2. IEstudiante egresada de la Universidad Católica de Santiago de Guayaquil. 20ocente de la Universidad Católica de Santiago de Guayaquil. Resumen Introducción: El cemento ionômero de vidrio o polialquenolato de vidrio ha evolucionado con el pasar de los años. Wilson y Kent.

inventaron un nuevo material para el uso odontológico, aquel material se centró en la reacción del aluminosilicato con el ácido poliacrilico, una vez mezclados estos materiales obtuvieron un producto llamado originalmente ASPA. (Aluminio, Silicato y PoliAcrilato), que fue el primer cemento ionémero de vidrio. El cemento ionómero de vidrio tuvo cambios en la composición química dando lugar a mejores resultados en las propiedades físicas, químicas y mecánicas. Objetivos: Analizar la evolución de cementos de ionómero de vidrio en odontopediatria Materiales y métodos: Este

estudio se basó en fuentes documentales de donde se obtuvo la información para el

siguiente estudio, se lo realizó a través de los buscadores como Pubmed y Cochrane. En cuanto a los criterios de inclusión y exclusión, permanecieron 31 artículos científicos la cual nos permitió estudiar

las siguientes variables: fuerza de flexión, fuerza de compresión, composición química y modo de preparación Resultados: los cementos ionómeros de vídrio modificados con resina tlenen mayor fuerza de flexión y compresión desde el año 1993. La liberación de flúor es mayor en los cementos modificados con resina,

Previo JoH CONTERNY

AGRADECIMIENTO

Le doy gracias a Dios por este logro, ya que gracias a su amor y misericordia puedo lograr esta victoria junto a mi familia. Le doy gracias a mi papá Gen Coronado Blum, a mi mamá Yanina Rivas y a mis hermanos Tonny y Jean; quienes han sido los que creyeron y apoyaron con mucho amor para que éste sueño ahora se vuelva realidad.

También le doy gracias a Dios por las personas que colocó en mi camino durante la carrera universitaria, personas tan especiales que hacían que todo se vuelva más llevadero.

Gracias a mis docentes por compartir sus conocimientos y experiencias que me sirvieron de guía en éste camino universitario.

Agradezco a mis tutores Dra. María José Cabrera por orientarme y darme ánimos en todo éste proceso, a la Dra. Estefanía Ocampo por acompañarme en el proceso metodológico con tantas ganas y amor.

Elena Cristina, Coronado Rivas

DEDICATORIA

Quiero dedicar éste trabajo a Dios y a mi familia que son los que siempre me han apoyado con mucho amor de manera incondicional, gracias por todo el sacrificio que han hecho por mí y por cada uno de mis hermanos, siempre dando lo mejor por cada uno de nosotros sus hijos.

Elena Cristina, Coronado Rivas

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE CIENCIAS MÉDICAS

CARRERA DE ODONTOLOGÍA

TRIBUNAL DE SUSTENTACIÓN

f	
Ber	múdez Velásquez, Andrea Cecilia.
	DECANO O DIRECTOR DE CARRERA
f	
	Pino Larrea, José Fernando
COORDINA	DOR DEL ÁREA O DOCENTE DE LA CARRERA
f.	
	Pino Larrea, José Fernando
	OPONENTE

"Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión Sistemática"

"Evolution of glass ionomer cements in pediatric dentistry. Systematic Review"

Elena Cristina Coronado Rivas₁, Maria José Cabrera Dávila₂.

₁Estudiante egresada de la Universidad Católica de Santiago de Guayaquil.

²Docente de la Universidad Católica de Santiago de Guayaquil.

Resumen

Introducción: El cemento ionómero de vidrio o polialquenolato de vidrio ha evolucionado con el pasar de los años. Wilson y Kent inventaron un nuevo material para el uso odontológico, aquel material se centró en la reacción del aluminosilicato con el ácido poliacrílico, una vez mezclados estos materiales obtuvieron un producto llamado originalmente ASPA (Aluminio, Silicato y PoliAcrilato), que fue el primer cemento ionómero de vidrio. El cemento ionómero de vidrio tuvo cambios en la composición química dando lugar a mejores resultados en las propiedades físicas, químicas y mecánicas. Objetivos: Analizar la evolución de cementos de ionómero de vidrio en odontopediatría Materiales y métodos: Éste estudio se basó en fuentes documentales de donde se obtuvo la información para el siguiente estudio, se lo realizó a través de los buscadores como Pubmed y Cochrane. En cuanto a los criterios de inclusión y exclusión, permanecieron 31 artículos científicos la cual nos permitió estudiar las siguientes variables: fuerza de flexión, fuerza de compresión, composición química y modo de preparación Resultados: los cementos ionómeros de vidrio modificados con resina tienen mayor fuerza de flexión y compresión desde el año 1993. La liberación de flúor es mayor en los cementos modificados con resina, la liberación de flúor es mayor en las primeras 24 horas, luego disminuyen y se mantiene de manera constante. En cuanto al modo de preparación se modificó para beneficio del odontólogo y paciente Conclusión: Los cementos ionómeros de vidrio fueron modificados para mejorar las propiedades químicas, físicas y mecánicas para beneficio del odontólogo y paciente.

Palabras Claves: ionómero de vidrio, liberación de flúor, fuerza de flexión, fuerza de compresión, modo de preparación.

Abstract

Introduction: Glass ionomer cement or glass polyalkenolate has evolved over the years. Wilson and Kent invented a new material for dental use, that material focused on the reaction of aluminosilicate with polyacrylic acid, once these materials were mixed they obtained a product originally called ASPA (Aluminum, Silicate and Polyacrylate), which was the first glass ionomer cement. The glass ionomer cement had changes in the chemical composition resulting in better results in physical, chemical and mechanical properties. **Objectives**: To analyze the evolution of glass ionomer cements in pediatric dentistry Materials and methods: This study was based on documentary sources from which the information for the following study was obtained through search engines such as Pubmed and Cochrane. As for the inclusion and exclusion criteria, 31 scientific articles remained, which allowed us to study the following variables: flexural strength, compressive strength, chemical composition and mode of preparation Results: resin-modified glass ionomer cements have higher flexural and compressive strength since 1993. Fluoride release is higher in resin-modified cements, fluoride release is higher in the first 24 hours, then decreases and remains constant. The mode of preparation was modified for the benefit of the dentist and patient. Conclusion: The glass ionomer cements were modified to improve the chemical, physical and mechanical properties for the benefit of the dentist and patient.

Key words: glass ionomer, fluoride release, flexural strength, compressive strength, preparation mode.

Introducción

investigación En la presente conoceremos cómo ha evolucionado el ionómero de vidrio cemento polialquenolato de vidrio, el cual fue patentado en el año 1969 por Wilson y Kent, éstos autores combinaron el polvo del cemento de silicato y el líquido del cemento de policarboxilato de Zinc. Ellos inventaron un nuevo material para el uso odontológico, aquel material se centró en la reacción del aluminosilicato con el ácido poliacrílico, una vez mezclados estos materiales obtuvieron un producto llamado originalmente ASPA (Aluminio, como cemento Silicato y PoliAcrilato)(1,2).

Los primeros resultados de dicha investigación fueron publicados en el año de 1972 en el British Dental Journal que tenía como título "Un nuevo cemento translúcido" (Wilson y Kent 1972). Wilson y Kent dieron a conocer diversas ventajas y desventajas del material, describieron éstas desventajas como textura irregular, fraguado lento, sensibilidad a la humedad y en algunos postoperatorio. casos dolor embargo, tenían ventajas tales como liberación de fluoruro. adhesión específica a esmalte y dentina y

coeficiente de expansión térmica comparada a la del diente, Dichas ventajas y desventajas fueron motivos de mejoramiento del material, lo que ahora se conoce como ionómero de vidrio(2).

Con el paso del tiempo los cementos ionómeros de vidrio han alcanzado numerosas modificaciones con el objetivo de mejorar sus propiedades clínicas y funcionales en pacientes pediátricos atendidos en odontología. Las modificaciones se han focalizado en los ionómeros de vidrio convencionales y los cementos de ionómero de vidrio modificados con resina(3,4).

Materiales Y Métodos

El presente trabajo de investigación, es un estudio con orientación cualitativa de tipo retrospectivo con diseño descriptivo, el siguiente estudio se basó en fuentes documentales de donde se obtuvo la información para el estudio a través de los buscadores como Pubmed y Cochrane. No se limitó en el idioma ya que fueron traducidos y utilizados.

Para lograr la obtención de datos se emplearon documentos de un espacio de tiempo entre 1993 – 2019. Los criterios de inclusión abarcaron investigaciones con una antigüedad de 28 años (hasta el

año 2019), el material a investigar fue el cemento ionómero de vidrio específicamente en odontopediatría.

Se indagaron 93 artículos científicos, aquellos fueron disminuyendo por causa de los criterios de exclusión en dónde no constaba con el enfoque de las propiedades de cemento ionómero de vidrio. Dando como consecuencia un estudio de 31 artículos, teniendo en consideración los criterios de inclusión donde el enfoque consistía en las diversas modificaciones a través del tiempo que tuvieron los cementos ionómeros de vidrio en odontopediatría.

Las variables a investigar fueron las siguientes: la liberación de flúor, fuerza de flexión, fuerza de compresión, composición química y modo de preparación de los cementos ionómeros de vidrio convencionales y los cementos ionómeros de vidrio modificados con resina.

Resultados

En la indagación de información sobre los cementos ionómeros de vidrio en odontopediatría se encontraron 93 artículos científicos, los cuales disminuyeron porque no contaban con los criterios de inclusión quedando 31

artículos que contaban con los criterios de inclusión.


En 7 artículos científicos se analizó la liberación de flúor del cemento ionómero de vidrio convencional y el cemento ionómero de vidrio modificado con resina, medidos en PPM. Por otra parte, en otros 11 artículos científicos se analizó la fuerza de flexión y 7 artículos científicos para analizar la fuerza de compresión del cemento ionómero de vidrio convencional y cemento ionómero vidrio modificado con resina, medidos en MPA. Después en 7artículos científicos se analizó la composición química del cemento ionómero de vidrio convencional y ionómero de vidrio modificado con resina. En añadidura, en 8 artículos científicos se analizó el modo de preparación que incluyen en los cementos ionómeros de vidrio en odontopediatría.

En relación a la liberación de flúor medidas en ppm, el cemento ionómero de vidrio convencional mostró menor cantidad de liberación de flúor que el cemento ionómero de vidrio modificado con resina durante los años 1999 al 2019. (Tabla 1)

Tabla 1. Liberación de flúor en ppm del cemento ionómero de vidrio convencional y modificado con resina

Tabla 2. Fuerza de flexión del cemento ionómero de vidrio convencional y modificado con resina, utilizados en odontopediatría

Referente, a las fuerzas de flexión yposeer menor fuerza de flexión. (Tabla 2) y compresión medidas en MPA, el cementocompresión (Tabla 3) durante los años 1993 ionómero de vidrio convencional mostróal 2019.

En cuanto a la composición química, ha evolucionado con el pasar de los años (tabla 4). El modo de preparación ha sido Modificado durante el año 1974 hasta el año 2017 (tabla 5)

Tabla 3. Fuerza de compresión del cemento ionómero de vidrio convencional y modificado con resina, utilizados en odontopediatría

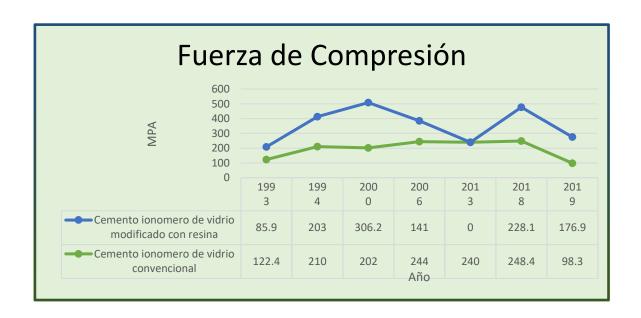
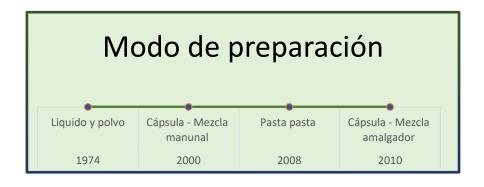



Tabla 4. Composición química del cemento ionómero de vidrio

Tabla 5. Modo de preparación de los cementos ionómeros de vidrio en odontopediatría

Discusión

Los cementos ionómeros de vidrio aplicados en odontopediatría han sido modificados con el paso de los años, teniendo como resultado un mejor material para dichos tratamientos.

En cuanto a la liberación de flúor en el año de 1999, según estudios, el autor Francis J. Robertello indicó que la liberación de flúor del cemento ionómero de vidrio modificado con resina era aún mayor que el cemento ionómero de vidrio convencional, pero que poseen la misma condición de inhibir caries (5)

En el año 2000, 2001 y 2009, según los autores Sayed Mostafa Mousavinasab, Vermeersch y Mazzaoui, indicaron que la liberación de flúor era menor en el primer día y con el pasar de los días iban aumentando, también indicaron que los cementos ionómeros de vidrio modificado con resina tienen mayor liberación de flúor que los ionómeros convencionales (6–8)

En el año 2003 Y 2014, según estudios realizados por el autor P. Dionysopoulos y la autora Carol Rubí Delgado Muñoz, indicaron que la liberación de flúor de los cementos ionómeros de vidrio convencional y modificado con resina en las primeras 24 horas es de mayor

cantidad y en los siguientes próximos días disminuye y se mantiene de manera constante.(9,10)

En el año 2019, según estudios, el autor Gilliard Lima Oliveira indicó que la liberación de flúor en las primeras 24 horas tenía mayor cantidad y luego disminuían. También indicó que mayor liberación de flúor tienen los cementos ionómeros de vidrio modificados con resina en comparación con los cementos ionómeros de vidrio convencional.(11)

En cuanto a la fuerza de flexión y compresión, desde el año 1993 al año 2019, los estudios de los autores indican que el cemento ionómero de vidrio modificado con resina es más resistente que el cemento ionómero de vidrio convencional.(12–22)

En cuanto a la composición química de los cementos ionómeros de vidrio han tenido variaciones. En el año 1969 Wilson y Kent crearon un nuevo material dental llamado ASPA la cual consistió en escoger las mejores propiedades del polvo del cemento de silicato y el líquido del cemento policarboxilato de zinc. Uso clínico en el año 1974 al cemento lo llamaron ASPA, contenía aluminio, silicato y poliacrilato; el cemento Aspa poseía ventajas y desventajas. En el año 1985 se le añadió partículas metálicas al polvo que dio

lugar a un cemento tipo cermets. En el año 1989 al cemento ionómero de vidrio hidroxietilmetacrilato se le añadió (HEMA) y fotoiniciadores, dando lugar al cemento ionómero de vidrio modificado con resina, obteniendo mejores resultados mecánicos y estéticos que los ionómeros convencionales(23,24).

La composición química del polvo consiste en fluoraminosilicato de calcio: oxido de silicio, oxido de aluminio, fluoruro de calcio, fluoruro de aluminio y sodio. La composición química del líquido consiste en agua, ácido poliacrílico, ácido tartárico, ácido itaconico, ácido maleico(24).El polvo libera grandes cantidades de iones de calcio, aluminio, flúor y sodio. El agua en su composición hace que en ese medio haya intercambio iónicos(25).

El ácido tartárico está incorporada a la fórmula del líquido ya que amplía el tiempo de trabajo, mejora el proceso de fraguado y fácil manipulación(26).El ácido poliacrílico da adhesión al tejido dentario. Elflúor posee acción anticariogénica(27). El ácido maleico e itacónico son soluciones que facilitan la manipulación. En el polvo se puede añadir Ba Sr permitir para radiopacidad(28).

En el 2007 se añadió nanopartículas con la finalidad de mejorar las propiedades mecánicas, biológicas y físicas, al añadir apatitas de tamaño nanométrico mejoró también la liberación de flúor que ayuda a disminuir la caries secundaria que se da alrededor de las restauraciones. Al adicionar cristales de apatita hacen que haya una mejor unión entre el diente y el cemento(28).

En el año 2017 según el autor José de Jesús Cedillo Valencia indica que muchos materiales ya no tienen Ca en su composición química, tienen estroncio o circonio; lo que ayuda a reducir los tiempos de trabajo y a mejorar las propiedades físicas, químicas y mecánicas(29).

En el año 2017 se añadió vidrio híbrido siendo una tecnología, nueva composición tiene la ventaja de iones perfeccionando aumentar la formación de matriz, dejando como consecuencia una superficie lisa y aumenta resistencia(29).

Según el modo de preparación en el año 2000, según estudios existían dos clases de presentación, polvo - líquido manual y mecánica; el modo de preparación manual polvo liquido tenían que ser mezclados según el fabricante con una proporción adecuada tanto

del polvo y líquido, se utilizaba una loseta de vidrio fría y una espátula de vidrio de acero inoxidable, la mezcla tenía que realizarse con rapidez no más de 45 segundos. El modo de preparación mecánica consistía en colocar el cemento en una cápsula por medio de una jeringa (30). En el año 2009, 2015 y en el año 2016, los materiales usados para la mezcla eran papel o vidrio usados como loseta y una espátula plástica o de metal; se dispensa el material según lo que indique el fabricante, una proporción de polvo por una de líquido mezclados durante 20 a 30 segundos(24,31,32). En el año 2010 y 2011 el modo de preparación de la cápsula, se recomienda agitarla antes de su uso, apretar el extremo de la capsula encima de la mesa de trabajo para que se una internamente el polvo y el líquido; al instante se coloca la cápsula en el amalgador durante 10 segundos, luego la cápsula se la ubica en la pistola de metal, una vez ubicada se activa dos veces el mango de la pistola (33-35).

Conclusiones

Los cementos ionómeros de vidrio en odontopediatría son

- materiales que han evolucionado a través del tiempo dando como resultado mejores propiedades físicas, químicas y mecánicas.
- ➤ La liberación de flúor de los ionómeros de vidrio es mayor en las primeras 24 horas, luego disminuye y se mantiene de manera constante.
- ➤ Desde el año 1993 al 2019 los cementos ionómeros de vidrio modificados con resina muestran tener mayor resistencia de flexión y compresión en comparación con los cementos ionómeros de vidrio convencionales.
- ➤ La composición química del cemento ionómero de vidrio fue evolucionando, ya que añadieron tanto al polvo como al líquido diferentes compuestos químicos, dando lugar a una mejora del material.
- Los cambios en el modo de preparación fueron mejorando, para beneficio del odontólogo como para el paciente.

Referencias

- 1. Valencia J de JC, Almanza AH, Mancilla RF. Hibridación a esmalte y dentina de los ionómeros de vidrio de alta densidad, estudio con MEB. Rev ADM. 1 de septiembre de 2017;74(4):177-84.
- 2. Sánchez LAF, Ortega JPR. Ionómeros de vidrio restauradores: valoración de acuerdo a la Norma 96 de la ADA. Rev ADM. 2010;67(2):72-7.
- 3. R. de Guzmán A. Evaluación Clínica de un Ionómero de Vidrio Modificado en Odontopediatría. Acta Odontológica Venezolana. diciembre de 2001;39(3):54-68.
- 4. Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Martí JMN, et al. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics. Int J Mol Sci. 14 de julio de 2016;17(7).
- 5. Robertello FJ, Coffey JP, Lynde TA, King P. Fluoride release of glass ionomer-based luting cements in vitro. J Prosthet Dent. agosto de 1999;82(2):172-6.
- 6. Mousavinasab SM, Meyers I. Fluoride Release by Glass Ionomer Cements, Compomer and Giomer. Dent Res J (Isfahan). 2009;6(2):75-81.
- 7. Mazzaoui SA, Burrow MF, Tyas MJ. Fluoride release from glass ionomer cements and resin composites coated with a dentin adhesive. Dent Mater. mayo de 2000;16(3):166-71.
- 8. Vermeersch G, Leloup G, Vreven J. Fluoride release from glassionomer cements, compomers and resin composites. J Oral Rehabil. enero de 2001;28(1):26-32.

- 9. Dionysopoulos P, Kotsanos N, Pataridou A. Fluoride release and uptake by four new fluoride releasing restorative materials. J Oral Rehabil. septiembre de 2003;30(9):866-72.
- 10. Muñoz C, Ortega J, Nagano A. Liberación de fluoruro de dos cementos de ionómero de vidrio: estudio in vitro. Revista odontológica mexicana. 1 de junio de 2014; 18:84-8.
- 11. Oliveira G, Carvalho C, Carvalho E, Bauer J, Leal A. The Influence of Mixing Methods on the Compressive Strength and Fluoride Release of Conventional and Resin-Modified Glass Ionomer Cements. International Journal of Dentistry. 15 de septiembre de 2019:2019:1-7.
- 12. Moshaverinia M, Navas A, Jahedmanesh N, Shah KC, Moshaverinia A, Ansari S. Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J Prosthet Dent. agosto de 2019;122(2):154-9.
- 13. Cattani-Lorente MA, Godin C, Meyer JM. Early strength of glass ionomer cements. Dent Mater. enero de 1993;9(1):57-62.
- 14. FM T, Hamouda I. Effect of Nano Filler on Microhardness, Diametral Tensile Strength and Compressive Strength of Nano-Filled Glass Ionomer. International Journal of Dentistry and Oral Science. 8 de febrero de 2017;413-7.
- 15. Miyazaki M, Moore BK, Onose H. Effect of surface coatings on flexural properties of glass ionomers. Eur J Oral Sci. diciembre de 1996;104(5-6):600-4.
- 16. Ramashanker, Singh RD, Chand P, Jurel SKm, Tripathi S. Evaluation of Adhesive and Compressive Strength of

- Glass Ionomer Cements. J Indian Prosthodont Soc. diciembre de 2011;11(4):210-4.
- 17. Momoi Y, Hirosaki K, Kohno A, McCabe JF. Flexural properties of resinmodified «hybrid» glass-ionomers in comparison with conventional acid-base glass-ionomers. Dent Mater J. diciembre de 1995;14(2):109-19.
- 18. J L, Y L, Y L, R S, F S. Flexure strength of resin-modified glass ionomer cements and their bond strength to dental composites [Internet]. Vol. 54, Acta odontologica Scandinavica. Acta Odontol Scand; 1996 [citado 3 de febrero de 2021]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/86692
- 19. Mitra SB, Kedrowski BL. Longterm mechanical properties of glass ionomers. Dent Mater. marzo de 1994:10(2):78-82.
- 20. Ilie N. Maturation of restorative glass ionomers with simplified application procedure. J Dent. diciembre de 2018;79:46-52.
- 21. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. marzo de 2000;16(2):129-38.
- 22. Peez R, Frank S. The physical-mechanical performance of the new Ketac Molar Easymix compared to commercially available glass ionomer restoratives. J Dent. septiembre de 2006;34(8):582-7.
- 23. R. de Guzmán A. Evaluación Clínica de un Ionómero de Vidrio Modificado en Odontopediatría. Acta Odontológica Venezolana. diciembre de 2001;39(3):54-68.

- 24. Paz T de la, Alguasil C de los MG, Espinosa MU. Ionómero de vidrio: el cemento dental de este siglo. Revista Electrónica Dr Zoilo E Marinello Vidaurreta [Internet]. 26 de mayo de 2016 [citado 5 de febrero de 2021];41(7). Disponible en: http://revzoilomarinello.sld.cu/index.ph p/zmv/article/view/724
- 25. Hernández González R, Moraga Castillo R, Velásquez Castilla M, Gutiérrez Flores F. Resistencia compresiva vidrio ionómero Ionofil Molar® y Vitremer® según tiempo de exposición en saliva artificial. Revista clínica de periodoncia, implantología y rehabilitación oral. agosto de 2013;6(2):75-7.
- 26. Sánchez CC. En la búsqueda del material restaurador inteligente. Rev ADM. 2010;67(3):114-20.
- 27. Torres MG, Mendoza TR, Guerrero IJ, Yamamoto NJ. Evaluación de la resistencia a la erosión ácida de dos ionómeros de vidrio utilizados en la técnica restaurativa atraumática (TRA), modificados con un antibiótico. Revista Científica Odontológica. 2015;3(2):326-32.
- 28. Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Martí JMN, et al. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics. Int J Mol Sci. 14 de julio de 2016;17(7).
- 29. Valencia J, Almanza A, Félix V. Equia forte. Innovación del futuro en obturación de cavidades. Rodyb [serial on the internet] (2017, ene), [cited July 10, 2018]. 2017;6(1):1-11.
- 30. Sánchez CC. Actualización sobre los cementos de ionómero de vidrio, 30

- años (1969-1999). Rev ADM. 2000;57(2):65-71.
- 31. Cabrera Villalobos Y, Álvarez Llanes M, Gómez Mariño M, Casanova Rivero Y. En busca del cemento adhesivo ideal: los ionómeros de vidrio. Revista Archivo Médico de Camagüey. febrero de 2010;14(1):0-0.
- 32. Arribas AJ, Nagano AY. Valoración de la microfiltración del ionómero de vidrio mejorado (Ketac Molar Easymix®) con o sin el uso de acondicionador. Revista Odontológica

- Mexicana. 1 de julio de 2015;19(3):170-3.
- 33. Valencia J de JC. Ionómero de Vidrio de alta densidad como base en la técnica restauradora de Sandwich. Rev ADM. 2011;68(1):39-47.
- 34. Valencia J de JC, Favela JAL. Ionómero de vidrio recargable como restauración definitiva (equia). Rev ADM. 2010;67(4):185-91.
- 35. Valencia C, Jesús J de. Ionómeros de vidrio remineralizantes: una alternativa de tratamiento preventivo o terapéutico. Rev ADM. 2011;258-65.

ANEXOS

cementos de cementació n a base de ionómero de vidrio in vitro	Francis J. Robertell o	1999		Se comparó la liberacionómero de vidrio mod Advance) ionómero de Cem y Fuji I). polvo y El ionómero de vidrio mayor liberación de fluvitremer 198 - Fuji I 1499	dificado e vidrio liquido modifi or, grad 40 - Ke	cado con residualmente has etac Cem 110	Vitremer y les (Ketac- ina mostró sta el día 28 - Advance
La liberación de flúor de los cementos de ionómero de vidrio y los	S.A. Mazzaoui ,, M.F. Burrow, M.J. Tyasa	2000	Elsevier Dental Materials	Ketac-Molar 44.1 ± Fuji IX GP 24.2 ± Fuji II LC 26.9 ± Photac-Fil 58.0 ± Ariston pHc 85.4 ±	16 5 ^a 3 ^a	les (ppm)	
compuestos de resina recubiertos con un adhesivo dentinario				no recubiertos y recu Multipurpose Adhesive		por 3M S	Scotchbond
de resina recubiertos con un adhesivo dentinario La liberación	G. Vermeer	200	Journal of Oral	Multipurpose Adhesive		Mean (s.d.)	Scotchbond
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los	Vermeer sch, G. Leloup			Multipurpose Adhesive	n	Mean (s.d.) 7 days	
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil	n 8	Mean (s.d.) 7 days 2.99 (0.51)	a
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de	Vermeer sch, G. Leloup		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense	n 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76)	a a
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi	n 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24)	a a b
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio,	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond	n 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21)	a a b b
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil	n 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23)	a a b b
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC	n 8 8 8 8 8 18	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38)	a a b b b
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass	n 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80)	a a b b
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC	n 8 8 8 8 8 18	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13)	a a b b b b c
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC Fuji IX	n 8 8 8 8 18 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10)	a a b b c d d, e
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC	n 8 8 8 8 18 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10) 0.43 (0.13)	a a b b c d d, e d, e
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC Fuji IX Vitremer Ketac Molar	n 8 8 8 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10) 0.43 (0.13) 0.35 (0.10)	a a b b c d d, e d, e d, e d, e, f
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC Fuji IX Vitremer Ketac Molar Fuji II LC impr	8 8 8 8 8 8 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10) 0.43 (0.13) 0.35 (0.10) 0.27 (0.04)	a a b b c d d, e d, e d, e, f e, f, g
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC Fuji IX Vitremer Ketac Molar Fuji II LC impr Compoglass	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10) 0.43 (0.13) 0.35 (0.10) 0.27 (0.04) 0.12 (0.04)	a a b b b c d d, e d, e d, e, f e, f, g f, g
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC Fuji IX Vitremer Ketac Molar Fuji II LC impr Compoglass Dyract	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10) 0.43 (0.13) 0.35 (0.10) 0.27 (0.04) 0.12 (0.04) 0.08 (0.03)	a a b b b c d d, e d, e d, e, f e, f, g f, g f, g
de resina recubiertos con un adhesivo dentinario La liberación de flúor de los cementos de ionómero de vidrio, compómer os y compuesto	Vermeer sch, G. Leloup & J.		of Oral Rehabilit	Multipurpose Adhesive Material Ketac Fil HiDense HiFi Vitrebond Photac Fil Fuji II CC Vivaglass Fuji II LC Fuji IX Vitremer Ketac Molar Fuji II LC impr Compoglass	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Mean (s.d.) 7 days 2.99 (0.51) 2.97 (0.76) 1.78 (0.24) 1.74 (0.21) 1.67 (0.23) 1.60 (0.38) 1.04 (0.80) 0.62 (0.13) 0.51 (0.10) 0.43 (0.13) 0.35 (0.10) 0.27 (0.04) 0.12 (0.04)	a a b b b c d d, e d, e d, e, f e, f, g f, g

La	P.	2003	Journal of	No. of				K. N	Molar	ē .			Vi	trem	er
liberación y absorción	Dionysop oulos, n.		Oral Rehabilita	specimen	s D	ay		Mea	an		s.d.		M	ean	s.d
de flúor por	kotsanos		tion	15		2		6.6	0		0.65		16	40	2.20
cuatro	a.		tion	15		4		5.3			0.70			10	1.30
nuevos	pataridou			15		6		3.2			0.48			30	0.94
liberadores	pataridou			15		8		3.2			0.40			10	0.96
de flúor				15 15		0		3·1 2·8			0·92 0·44			10	1.34
materiales				15	1			2.1			0.46			76	1.6
de				15	1	6		1.3	8		0.35		3	55	1.46
restauración				15	1			1.1			0.30			26	0.84
restauración				15 15	2	0		1.1			0·32 0·46			92	0.8
							-1			,		1 1			
				La liber (encapsu Vitrement descendi	lado (Io	ic nón	onói nerc	mero de	de vidr	vi io n	drio nod	co ifica	nve	ncio	
Liberación	Sayed	2009	Dental	Table 1. M							ara,	,			
de flúor por los	Mostafa Mousavin		Research Journal		Proc	duct	t			Т	/pe	ı	Manu	ufac	turer
cementos de	asab				GC F	Fuji '	VII			G	C	(GC C	orpo	ration, To
ionómero de vidrio, el					GC F	Fuji l	X G	P Fas	t	G	C	(GC C	orpo	ration, To
compómero y el giomer					GC F	Fuji l	IX G	P Ext	ra	G	C	(GC C	orpo	ration, To
y or gromer				1	GC F	Fuji l	II LC			G	C	(GC C	orpo	ration, To
				Table 2.	Cumu	lativ	e fluo	oride re	elease	fron	n teste	ed ma	terial	s (µg	cm²); stanc
				Days		D1		D2	2	ı	03		D4		D5
				FVII		12.64 5.87		66.5			3.16		97.91 10.24		110.06 (11.38)
				FIX	1	1.60)	14.9	96	18	3.86		21.11	1	23.95 (2.46)
				FIXEX	3	38.39	9	55.1	18	64	.50		73.56	6	80.91
				FIILC		9.11 10.52		14.5).96) 3.52		11.66 21.41		(12.02) 23.98
					(1.69)	(1.6	8)	(1	.83)	(1.98)	(2.10)
T :1 : /	Camal	2014	Revista	μg/cm ²						_					
Liberación	Carol	2014	Salar Sa	0117				_	_		K	_	_	_	_
de fluoruro de dos	Rubí Delgado		Odontoló gica	CIV				1	2	3	4	5	6	7	
cementos de	Muñoz,Ju		Mexicana	Ketac	Av	erag	je	12.0	5.2	5.4	3.8	4.3	3.5	3.5	
ionómero de vidrio:	ana Paulina			Molar	σ	±		2.4	1.6	3.6	2.2	2.5	1.6	2.1	
estudio in vitro	Ramírez Ortega,			FUJI II	Av	erag	je	12.4	5.0	6.0	3.0	3.3	3.5	3.3	
VIIIO	Adolfo				σ	±		2.6	2.2	1.7	1.1	1.0	1.5	1.4	
	Yamamot o			31 34	35	36	37	38							
	NaganoII			3.3 5.1	3.2	2.8	3.7	3.3							
				1.6 2.2	0.6	0.6	1.8	1.3							
				2.2 5.5	5.5	5.1	4.0	3.1							
				0.7 1.8	1.5	1.3	1.1	8.0							
				La libera											
				durante			ime	ras :	24	hora	ıs.	Lue	go	dis	minuyó
				gradualn											1177
La	Gilliard	201	Internati	Las caps											
influencia de los	Lima Oliveira,	9	onal Journal	Dos cor Corp., T					uji .	II y	Fu	ji II	Ca	psu	le, GC
uc 108	Onvella,	L	Journal	Corp., I	OKIC	J, Jč	ihoi	IJ							

métodos de	Ceci	of	Dos modificad	los con resina	(Fuji II LC	y Fuji II LC
mezcla en	Nunes	Dentistry	Capsule)			
la	Carvalho		Materials	N	fean and standard	deviations of fluor
compresió	,			Day 1	Day 2	Day 5
n, la fuerza	Edilauss		Fuji II	$33.9 \pm 3.7 \text{Ab}$	11.2 ± 0.8 Bc 15.7 ± 2.7 Ba	4.6 ± 0.2 Cb 6.1 ± 1.3 Cab
y la	on		Fuji II Caps Fuji II LC	47.3 ± 5.0 Aa 28.9 ± 0.7 Ac		6.8 ± 0.2 Ca
liberación	Moreno		Fuji II LC Caps			Tellis and Committee of the Committee of
de flúor de	Carvalho		Ionoseal	0.1 ± 0.1 Ad	0 ± 0 Ad	0 ± 0Ad
los	, Jose					
productos	Bauer ,					
convencio	and					
nales y	Adriana					
cementos	Mara					
de	Araujo					
ionómero	Leal					
de vidrio	Lear					
modificado						
s con						
resina						

TÍTULO	AUTOR	AÑO	REVISTA	VARIABLE- FUERZA DE FLEXIÓN Y FUERZA COMPRESIVA
La	M-A.	1993	Dental	TABLE 1: GLASS IONOMER CEMENTS TESTED
resistenci	Cattani-		Materials	Code Product Group Manufacturer Batch No.
a	Lorente,			BS1 Bio-glass luting cement I Bosworth¹ 50488301
temprana	C.			DT3 Aquacem I DeTreyDentsply* 880788 ES1 Ketac-cemRadiopaque I ESPE* R194
de los	Godin,			GC1 GCFuji I GC Dental Ind. * 010381/31038 PK2 Gloement + liner I Parkell* 51288
cementos	J. M.			PR1 PrCement I P. Rolland ^d 8710
de	Meyer			DT2c Chemfillincaps IIa DeTrey Dentsply ^a
ionómero de vidrio				DT2p Chemfil II IIa
de vidito				ES3p Chelon-fil lia ESPE ¹ R148
				GC2 GCFuji II lia GCDental Ind. ⁴ 290381 ES4c Ketac-silverCapsule Applic lib ESPE ³ R162
				ES4p Chelon-silver lib ESPE ¹ R147
				3M1 Glass ionomer liner III 3M7 P870902
				3M2* Exp 91 LC GI Liner III 3M7 6/88LIGHT1 BS2 Bio glass base & lining III Bosworth 10/1587415
				DT1c Baseline incaps III DeTrey Dentsply ¹ DT1p Baseline III DeTrey Dentsply ¹ 880827
				ES2c Ketac-bond Capsule Appic III ESPEI R216
				ES2p Ketac-bond III ESPE R096 GC3 GC dentincement III GC Dental ind. 70481
				GC4 GC liningcement III GC Dental Ind.* 111271 GC5 GC Fuji III III GC Dental Ind.* 290561
				KZ1 Glassionomerliner III KulzerInc. ⁸ 8609
				PD1 Glassline III Pulpdent 42888 PK1 Gingliva seal III Parkell 0587172/0487
				GOS GC Attect CAC GC Dental Ind* 140461
				DT4 Poly-t-plus Ref DeTrey Dentsphy* 871111
				TABLE 4: FLEXURAL STRENGTH Flexural Strength* Flexural Strength*
				Code Group N (MPa) Code Group N (MPa)
				GC1 I 4 2.7 ± 0.5 GC4 III 5 1.4 ± 0.6
				ES1 4 2.9 ± 0.4 ZA1 4 2.0 ± 0.3 BS1 6 4.3 ± 0.8 GC5 6 2.7 ± 1.0
				PR1 I 4 7.3 ± 1.2 ES2p III 5 3.1 ± 1.4
				DT3 4 8.4 ± 1.6 3M1 III 5 3.1 ± 1.4 PK2 6 12.0 ± 2.5 GC3 III 6 3.2 ± 1.0
				BS2 III 5 5.4 ± 2.5
				ES2c III 6 6.6±2.1
				GC2 IIa 4 3.5±0.6 3M2 III 6 7.4±1.8 ES4c IIb 4 6.9±0.5 PD1 III 4 10.3±1.8
				ES3p IIa 6 7.5 ± 1.3 DT1p III 2 11.6 ± 1.2
				DT2p IIa 6 9.3±4.2 DT1c III 5 11.8±4.0 ES3c IIa 2 10.3±3.7 PK1 III 6 13.0±3.8
				ES4p IIb 6 11.4 ± 3.9
				DT2c IIa 6 25.0±5.7 GC6 CAC 6 9.5±2.0
				DT4 Ref 5 17.8 ± 4.2 TABLE 2: COMPRESSIVE STRENGTH
				Compressive* Compressive*
				Code Group N Strength (MPa) Code Group N Strength (MPa)
				PK2 3 74.0 ± 5.3 PD1 III 4 40.4 ± 6.9
				PRI 3 91.3±7.0 KZ1 C 3 50.2±2.5 DT3 3 105.1±17.5 GC4 4 58.2±12.2
				GC1 I 4 119.8±12.6 3M1 III 4 65.6±11.2
				ES1 I 4 122.4 ± 12.7 DT1p_ III 4 66.5 ± 10.8
				GCS T III 4 85.9 ± 13.0 PK1
				ES4c b 3 112.6 ± 26.1 GC3 III 4 104.1 ± 7.6
				ES4p IIb 4 124.9±20.0 BS2 III 4 114.9±11.0 DT2c IIa 4 135.5±16.3 ES2p III 3 116.8±14.5
				ES3c lla 3 1524±10.6 DT1cT III 4 1382±16.3
				ES3p IIa 3 154.7±22.9 ES2c.Î III 3 142.5±15.5
				GC2 Na 4 158.9±14.1 DT2p Na 3 197.5±12.4 GC6 CAC 4 40.6±6.2
_				DT4 Ref 3 90.6±24.3
Las	Sumita	1994	Dental	Fuerza de Flexión y Fuerza compresiva
propieda	B. Mitro		Materials	
des mecánic	Mitra, Brant			
as a	L.			
largo	L.			
largo				

plazo de	Kedro							TABLE 2: COMPF	DECOME STREM	ICTUS (N
ionómer	wski							IADLE 2. COMPT	Mean±S.D.	IG THS (IV
os de	World				Fuji II	Fuji C	ap II Fuji II	LC Miracle N		Ket
vidrio				24 h	210±23	156±2	203±12	128± 3	172± 6	170
				1 wk	234±32	201±1	5 214± 2	150±12	202±17	191
				4 wk	201±20	217±3	7 214± 7	166±13	202±16	208
				12 wk	211±13	225±2	203± 6	165±11	194±17	185
				24 wk	234±16	210±1	2 213± 5	147±23	182±12	231
				52 wk	219±2	220±1	6 209±10	167±16	213±21	219
				TABI		RAL STRENGTHS A	T 24 h (MPa) ural Strength			
				Fuji II			±1.2			
				Fuji C			±2.5			
				Fuji II	LC	56.6	±3.8			
				Mirac	le Mix		±1.3			
				Ketac			12.2			
					Silver	26.9:	±2.1 ±3.8			
				113127112	mer Tri-Cure	61.7:				
				Note: Vertical li icantly different	nes of simila p < 0.05.	r notation indicate val	ues that were not signif-	Fuerza	de Flexio	in v
				Fuerza	comp	resiva				3
Efecto de	Miyaza	1996	European					Table 2		
los	ki M,		journal of	FI	exural:	strength (\sigma_F.	MPa) and fle	xural modulus	(E, GPa) of	glass io
recubrimi	Moore		oral	Mater	rial	Coating	1 h	24 h	l wk	1 mor
entos superfici	BK, Onose		sciences		σ_{F}	yes no	49.8 (4.2) 42.4 (2.4)	51.3 (3.2) 50.1 (4.4)	59.0 (3.5) 55.8 (6.6)	60.8 (6 56.1 (7
ales en las	Н			IIIC	E	yes no	5.4 (0.7) 5.0 (0.6)	7.1 (0.6) 7.7 (0.3)	8.0 (0.8) 8.3 (0.7)	8.3 (1
propieda des de					$\sigma_{\rm F}$	yes no	39.5 (2.7) 31.0 (2.9)	51.1 (8.2) 47.7 (7.0)	48.6 (6.6) 47.1 (6.9)	54.7 (5 50.5 (7
flexión				VT						_
			1			W1000000	4.4.70.31	0.01.11.11	0.1 (1.4)	
de los					Е	yes no	4.4 (0.2) 4.7 (0.6)	8.9 (1.1) 9.6 (0.5)	9.1 (1.4)	9.9 (1
de los ionómero s de					ϵ					
ionómero				FII	$\sigma_{\rm F}$	no yes no	4.7 (0.6) 18.0 (1.6) 12.1 (1.5)	9.6 (0.5) ¹ 21.7 (2.3) 21.1 (3.7)	20.5 (3.9) 19.3 (3.2)	20.1 (2 19.3 (3
ionómero s de				FII		no yes	4.7 (0.6) 18.0 (1.6)	9.6 (0.5) ¹ 21.7 (2.3) ₁	20.5 (3.9)	20.1 (2
ionómero s de				Glass ionor	σ _F E	no yes no yes	4.7 (0.6) 18.0 (1.6) 12.1 (1.5) 12.2 (0.8)	9.6 (0.5) 21.7 (2.3) 21.1 (3.7) 13.6 (1.2) 16.2 (1.8)	20.5 (3.9) 19.3 (3.2) 14.2 (2.4)	20.1 (2 19.3 (3
ionómero s de				Glass ionor	σ _F E	yes no yes no	4.7 (0.6) 18.0 (1.6) 12.1 (1.5) 12.2 (0.8)	9.6 (0.5) 21.7 (2.3) 21.1 (3.7) 13.6 (1.2) 16.2 (1.8) Batch no. P: 05074 1: 08074	20.5 (3.9) 19.3 (3.2) 14.2 (2.4)	20.1 (2 19.3 (3
ionómero s de				Glass ionor (manufactu Fuji II LC (GC Corp.	σ _F E mer irer)	yes no yes no	4.7 (0.6) 18.0 (1.6) 12.1 (1.5) 12.2 (0.8) 8.8 (2.4)	9.6 (0.5) 21.7 (2.3) 21.1 (3.7) 13.6 (1.2) 16.2 (1.8) Batch no. P: 05074	20.5 (3.9) 19.3 (3.2) 14.2 (2.4)	20.1 (2 19.3 (3
ionómero s de				Glass ionor (manufactu Fuji II LC (GC Corp.	σ _F E mer arer) , Tokyo, J	no yes no yes no	4.7 (0.6) 18.0 (1.6) 12.1 (1.5) 12.2 (0.8) 8.8 (2.4)	9.6 (0.5) ¹ 21.7 (2.3) 21.1 (3.7) 13.6 (1.2) 16.2 (1.8) Batch no. P: 05074 L: 08074 P: 441	20.5 (3.9) 19.3 (3.2) 14.2 (2.4)	20.1 (2 19.3 (3

Propieda	D. Xiea,	2000	Dental	Code	P/L ratio (w/w)	FS (MPa)	CS (MPa)	
des mecánica s y microestr ucturas de los cementos de ionómero de vidrio	W.A. Brantle yb, B.M. Culberts onb, G. Wanga		Materials	KB AS AF KS KF KM F2 VM F2LC PF Material	3.0/1 4.2/1 2.7/1 Encapsulated 3.2/1 3.1/1 2.7/1 2.5/1 3.2/1 3.2/1	11.1 (1.1) 31.4 (3.4) b,c,d 26.8 (3.1) b,c,d,e 22.9 (1.9) c,d,e,f 22.6 (2.5) c,d,e,f 21.2 (3.1) d,e,f 26.1 (3.9) b,c,d,e,f 82.1 (3.3) 71.1 (3.6) a 74.4 (5.1) a	225.7 (7.3 176.0 (6.5 196.5 (8.3 211.8 (3.2 251.2 (10. 301.3 (10. 202.0 (10. 265.3 (7.5 306.2 (6.8 243.5 (7.9	(b) e,f (c) g,h (c) e,f,g (d) b,c,d (d) f,g,h (d) f,g,h (e) f,g,h (e) f,g,h (e) f,g,h
				Ketac-Bor α-Silver ^a	ad ^a	KB AS		
				α-Fil ^a		AF		
				Ketac-Silv	/er ^a	KS		
				Ketac-Fil ^a		KF		
				Ketac-Mo	larª	KM		
				Fuji II ^a Vitremer ^b	(T)	F2		
				- see the second		VM		
				Fuji II LC Photac-Fil	b (Improved)	F2LC PF		
				Fuerza d	le Flexión y Fuer	za compresiva		
Propieda des de	Yasuko MOMO	1995	Dental Materials	Table 1	Glass-ionomers	s tested in this stu	ıdy	
flexión	I,		Materiais	Materi	al		Code	
de los ionómero s de vidrio "híbridos	gu HIROS AKI, Atsushi KOHN			Fuji Io Fuji Io Photac Ketac-	storative nomer Type II Lonomer Type II ¹ -Fil APLICAP ² Fil APLICAP ²	C1	FIIR FIIC PFR KFC	Resir Conv Resir Conv
modifica dos con	O and John F.				er/base ning LC¹		FLR	Resin
resina en				Lining	Cement ¹		FLC	Conv
comparac	E1				-Bond APLICAP ² Bond APLICAP ²		PBR KBC	Resin
ión con los				Trette	Dona III Dieili		1100	Conv
ionómero				Table 2	Flexural strength (MPa 30 min), mean (S.D.) 24 h	3 m	_
s de				FIIR	38.3 (5.1)	26.7 (4.4)	82.4 (8.9)	_
vidrio de base				FIIC	8.9 (2.1) A	10.9 (1.4)	32.6 (8.5) B	
ácida				PFR	10.5 (1.6) AB	63.9 (6.3)	44.6 (3.9)	
convenci onales				KFC	14.1 (1.4) AB	20.7 (2.0) A	22.7 (6.2) A	
Silaies				FLR	17.7 (3.0) B	18.1 (4.3) A	54.4 (9.1)	
				FLC	4.2 (0.8)	3.4 (1.0)	9.9 (5.3)	
				PBR	12.3 (1.0) AB	36.8 (4.6) B	24.4 (6.3) A	
				KBC	26.7 (2.0)	35.5 (5.6) B	34.1 (4.8) B	
				Fuerza c	le Flexión			

			-							
El	R. Peez	2006	Journal of		– Materia					
rendimie	, S.		dentistry	Product		Manufacturer	Lot			
nto	Frank		à- <u>ē</u> d	Ketac TM Molar E		3M ESPE	Powder: TA002			
físico-							Liquid: KS-017			
mecánico				Fuji IX		GC	Powder: 202271/ Liquid: 206111/0			
del nuevo				Vitro Mol	ar	DFL	Powder and liqu	id: 302110		
KetacTM				Vidrion R	Į.	SS White	Powder: 00U Liquid: 00B			
Molar				Ionofil® N	Molar	voco	Powder: 28675/0	2557		
							Liquid: 15729			
Easymix				Table	2 - Res	ulte and et	atistics of co	mnrecci	ve and flevi	iral strength
compara					ial stati	11.15	2.300			
do con						0.000	CS (1 h)		C5 (24)	h) (MPa)
los						Easymix	150 ± 16	m ^a	244 ± 9	p ^a
restaurad				Fuji IX Vitro M			136 ± 12 97 ± 7	m ^a n ^a	236 ± 28 141 ± 15	p ^a r ^a
ores de				Vidrior			78 ± 3	oa	175 ± 11	
ionómero				Ionofil	® Molar		87 ± 1	noa	196 ± 12	
de vidrio										
disponibl										
es en el										
mercado										
Rendimie	Gustavo	2013	Scielo							
nto	Fabián	2013	Science							
	Molina.									
mecánico										
de los	0.00			Keta	c Mola	r Easymix				
cementos	Juan									
de	Cabral				Gold					
ionómero				Cher	nfil Ro	ck				
de vidrio				EQU	IA					
restaurad					F0			00		
ores					FS			CS		
encapsul				N	mean	SD	N	mean	SD	
ados para				60	28.9ª	5.4	20	240.3ª	37.7	
su uso en				60	41.8	6.4	20	271.6ª	52.2	
el				60	46.5		20	343.1b	68.3	
tratamien										
1000-000-000-000-000-000-000-000-000-00				60	49.8	6.4	20	358.5 ^b	65.7	
to										
reconstit										
uyente										
traumátic										
o (ART)										
La	Jianguo	2015	Acta	Ma	terial		Flexure	e streng	th	
resistenci	Li,		Odontolo							
	Yajuan		gica	Keta	c-Bon	d	10.	6 ± 1.2		
flexión	Liu,		Scandinav		ac-fil	1 77		$0 \pm 5.6^{\circ}$		
del	Yun		ica	Vitre				7 ± 6.3		
ionómero			l ca		II LC	:		6 ± 9.3		
					omola			5 ± 2.7		
de vidrio				Z-10			134.	6 ± 6.4		
modifica	Soremar									
do con										
resina los										
cementos	Sundstr									
y su	om									
fuerza de										
adhesión										
a los										
compuest										
os										
dentales										
ucinales	L									

Efecto del	Toras FM,	2017	Internatio nal	Table	3. Mean Compressiv	e Streng	th (MPa) for the
nanorrell eno en la	Hamou da		Journal of Dentistry		Materials		Mean ± SD
microdur			and Oral		Ketac Fil Plus Ap	licap	23.12 ± 2.06 ^c
eza, la resistenci			Science		GC Fuji II LC	-	62.69 ± 11.86 ^A
a a la					Glass Carbomer Fil		35.57 ± 20.9^{B}
tensión				, i	Glass Carbonici i ii	, oci	33.37 = 20.7
diametral				M	eans with different sup	erscripted	l letters are signif
y la resistenci					1		O
a a la compresi ón del ionómero de vidrio nanorrell							
eno Maduraci	Nicoleta	2018	Journal of	- 5		D0 1 E1	
ón de	Ilie	2018	Dentistry	CS	Immersion 24h	Riva, R 193.6 ± 22.5 _A	Ionostar, I
ionómero				m _{CS}		10.1 (8.9, 11.2)	24.4 (21.6
s de				CS m _{CS}	3 months	$263.6 \pm 30.4_{b}$ 10.2 (9.6, 10.8)	
vidrio restaurad				CS m _{CS}	1 year	249.7 ± 24.7 A	
ores con				ES	24h	197.2 ± 30.2	186.7 ±
procedim				m _{ES}	3 months	7.7 (7.2, 8.2) 219.3 \pm 36.0 _a	
iento de aplicació				m _{ES}	1 year	6.9 (6.4, 7.4) 274.5 ± 48.4	13.1 (11.6 259.3 ±
n				m _{ES}	1 year	6.3 (5.9, 6.8)	16.5 (15.3
simplific							
ado	3.6	2010	TO STATE OF THE ST	25			
Evaluaci ón	Maryam Moshav	2019	The Journal of	300.	NS NS		
comparat iva de las propieda des físicas de un	erinia, DDS,a Angela Navas,		prothestic dentistry	Compressive Strength (MPa)	1 day 7 days		
material				100	■ Fuji IX ■ Equia Forte ■ Chemfil Rock A		
de					■ Fuji IX ■ Equia Forte ■ Chemfil Rock		
restauraci ón dental				75 75	*		
de ionómero de vidrio reforzado				Hexural Strength (MPa)	I I I		
Loronzado				٥	1 day 7 days	_	

La influenci	Gilliard Lima	2019	Internatio nal		250 -]				212.4 :
a de los métodos	Oliveira , Ceci		Journal of Dentistry	(Pa)	200 -		153.3 ± 35.3	150.3 ± 22.1	176.9 ± 12.6	T
de mezcla	Nunes Carvalh			ength (A	150 -	98.3 ± 22.4	В	В	В	
en la compresi	o , Edilauss			Compressive strength (MPa)	100 -	T				
ón, la fuerza y	on Moreno			Compr	50 -					
la liberació	Carvalh o, Jose				0 -					
n de flúor de los						Fuji II hand mix	Fuji II caps nechanical mix	Fuji II LC hand mix	Fuji IILC caps mechanical mix	Ionoseal
producto s	Adriana Mara			_			Fi		Fuji I mecha	
convenci onales y	Araujo Leal			Fue	rza c	ompresiva				
cementos										
ionómero de vidrio										
modifica										
dos con resina										-

AUTOR	AÑO	REVISTA	VARIABLE - COMPOSICION QUIMICA
Aleska R. de	2001	Acta	 El cemento ionomero de vidrio
Guzmán		Odontológica	descritos por Wilson y Kent
		Venezolana	1972
			Consistía en polvo de vidrio
			alúmino silicato y la solución de un
			ácido poliacrílico
			 En el año 1974 Mc Lean y
			Wilson crearon el material
			ASPA (Aluminio-Silicato-
			Poliacrilato)
			• 3M en el año 1989 creó el
			primer ionómero de vidrio
			modificado con resina del
			mercado (VITREMER)
			líquido es un ácido poliacrílico
			modificado con grupos de metacrilatos, HEMA (2-
			hidroxietilmetacrilato), agua y
			un fotoiniciador, HEMA
			Estos materiales resolvieron las
			desventajasde los cementos de
			ionómero de vidrio
			convencionales tales como el
			corto tiempo de trabajo, el largo
			tiempo defraguado y la
			sensibilidad a la humedad
			durante las etapas de
	Aleska R. de	Aleska R. de 2001	Aleska R. de 2001 Acta

				endurecimiento; preservando a su vez las ventajasclínicas tales como la estética, la adhesión a los tejidos dentarios, la liberación de flúor y el aislamientotérmico
Propiedades superficiales antibacterianas de varios materiales de restauración liberadores de flúor in vitro	Elif Sungurtekin- Ekci	2015	J Appl Biomater Funct Mater	Fuji IX GP GIC Polvo: Vidrio alumino-fluorosilicato Líquido: Agua, ácido poliacrílico, ácido carboxílico polibásico Ketac Molar GIC Polvo: Vidrio de fluorosilicato Al-Ca- La, 5% de ácido copolímero (ácido acrílico y maleico) Líquido: Ácido polalquenoico, ácido tartárico, agua Fuji II LC RMGIC Polvo: Vidrio alumino-fluoro-silicato Líquido: Ácido poliacrílico, HEMA, trimetildicarbonato de hexametileno, dimetacrilato de trietilenglicol Vitremer RMGIC Polvo: Vidrio fluoroaluminoso-silicato, persulfato de potasio, ácido ascórbico Líquido: Ácido polalquenoico HEMA, dimetacrilato, fotoiniciador, agua Ketac N100 RMGIC Agua desionizada, HEMA, copolímero vitrebond/ácido metacrílico modificado vidrio fluoroaluminoso-silicato, nanómeros, nanoclusters
Capacidad de liberación/recarga de flúor y fuerza de adhesión de los cementos de ionómero de vidrio a la dentina sana y afectada por la caries	E Kucukyilmaz, S Savas	2017	The Journal of Contemporary Dental	Ketac N100 Pasta A: Vidrio de fluoroaluminosilicato, sílice ZrO2 tratada con silano, sílice tratada con silano sílice, PEGDMA, HEMA, Bis-GMA, TEGDMA Pasta B: Cerámica tratada con silano, sílice tratada con silano, agua, HEMA, copolímero de ácido acrílico/itacónico Rellenos: 69% p/p (2/3 de nanorellenos)
En la búsqueda del material restaurador inteligente	Carlos Carrillo Sánchez	2010	Revista ADM	El ácido tartárico está incorporada a la fórmula del líquido ya que amplía el tiempo de trabajo, mejora el proceso de fraguado y fácil manipulación
Evaluación de la resistencia a la erosión ácida de dos ionómeros de vidrio utilizados en la técnica restaurativa atraumática (tra), modificados con un antibiótico	Torres MG	2015	Revista Científica Odontológica	El ácido poliacrílico da adhesión al tejido dentario. El flúor posee acción anticariogénica
Resistencia compresiva vidrio	Hernández González R	2013	Rev. Clin. Periodoncia	El polvo libera grandes cantidades de iones de calcio, aluminio, flúor y sodio.

ionómero Ionofil			Implantol.	El agua es su composición hace que en
Molar® y			Rehabil. Oral	ese medio haya intercambio iónicos
Vitremer® según				
tiempo de				
exposición en				
saliva artificial				
Modifications in	Shariq Najeeb	2016	International	Nanopartículas en la mezcla de los
Glass Ionomer			journal	cementos ionomeros de vidrio
Cements: Nano-			molecular	Mejora las propiedades físicas químicas
Sized			sciences	y mecánicas
Fillers and				
Bioactive				
Nanoceramics				

TITULO	AUTOR	AÑO	REVISTA	VARIABLE- MODO DE PREPARACIÓN
Actualización sobre los cementos de ionómero de vidrio, 30 años (1969-1999)	Dr. Carlos Carrillo Sánchez	2000	Revista ADM	Polvo-líquido (manual) utilizar la proporción adecuada de polvolíquido que marca el fabricante, además de utilizar una loseta de vidrio fría que permita la total incorporación del polvo al liquido y que se mantenga la plasticidad y la humectación de la mezcla. La reducción en el contenido de polvo en la mezcla puede darle al cemento mayor translucidez, pero presenta una reducción considerable en las propiedades físicas del material.El polvo se debe de incorporar al líquido con rapidez y con el uso de una espátula de acero inoxidable, en un tiempo de mezcla no mayor de 45 segundos y al terminar siempre debe presentar una superficie brillante. Si el mezclado se prolonga en tiempo, la mezcla se torna opaca y se sacrifica la adhesión a la estructura dental En cápsulas (mecánica)permite la colocación del cemento por medio de una jeringa especial, con una mínima incorporación de aire, con un tiempo de trabajo inalterable, con las mejores propiedades físicas y con una ligera disminución en el tiempo de fraguado
En busca del cemento adhesivo ideal: los ionómeros de vidrio	Dra. Yanelys Cabrera Villalobos	2009	Revista ADM	dispensar según fabricante (una medida de polvo por una gota de líquido), mezclado (de 20-30seg). El polvo se divide en dos o tres partes. Inicialmente la mezcla parecerá muy espesa, pero en la medida que las partículas se disuelven, se torna menos viscosa. Hay que resistir la tentación de adicionar más líquido.

				El mezclado es rápido y la reacción libera muy poco calor. La consistencia es cremosa y brillante.
Ionómero de vidrio recargable como restauración definitiva (equia)	José de Jesús Cedillo Valencia	2010	Revista ADM	Capsula Ácido poliacrílico por 10 segundos22 (GC cavity conditioner)®, usando una esponja o una pequeña torunda de algodón Es recomendable agitar la cápsula del Fuji IX antes de activarla, presionando la parte amarilla de la cápsula sobre la mesa de trabajo, hasta que penetre dentro de la parte gris de la cápsula y se esconda. Luego se coloca en la pistola de metal de activación, presionando el mango una sola vez y en este momento ya está activada. Inmediatamente se retira la cápsula de la pistola y se coloca en el amalgamador, éste se programa por 10 segundos a 4,000 RPM. Una vez terminado el ciclo, se retira del amalgamador y se coloca en la pistola de metal, ya colocada se activa el mango dos veces; y a la tercera activación ya saldrá el material, que se lleva a la cavidad, procurando ir cubriendo de la base de la cavidad hasta el margen. En este momento el operador cuenta con un minuto quince segundos de tiempo de trabajo a una temperatura de 23° C. Es importante recordar que teniendo temperaturas altas en el ambiente se reduce el tiempo de trabajo; si se requiere se puede colocar una matriz, o contornear con un microbrush®, aunque no es necesario. Después de obturar la cavidad, se colocó el GC Fuji G Coat Plus™ y se fotopolimerizó por 20 segundos con una lámpara de QTH a >500mW/ cm2, Se deben dejar pasar dos minutos y medio desde el inicio de la mezcla, para terminar el endurecimiento
Ionómero de Vidrio de alta densidad como base en la técnica restauradora de Sandwich.	José de Jesús Cedillo Valencia	2010	Revista ADM	Ácido poliacrilico por 10 segundos GC Cavity Conditioner despues se lava con agua destilada por 15 segundos y con un algodon se retira el agua, evitando deshidratar la dentina. Se tiene que observar la cavidad humeda. Se prepara la capsula de Fuji IX GP extra; primero se agita la capsula antes de activarla, presionando la parte amarilla de la misma sobre la mesa de trabajo, hasta que penetre dentro de la parte

				gris de la capsula y se esconda. Por último se coloca en la pistola de metal de activacion GC, presionando el mango una sola vez, quedando en este momento activada. Inmediatamente se retira la capsula de la pistola y se coloca en un mezclador de cementos como el 3M ESPE RotoMix TM , programando este por 9 segundos. Una vez terminado el ciclo, se retira del mezclador de cementos y se coloca en la pistola de metal GC. Ya colocada se activa el mango dos veces y a la tercera activación ya saldra el material, que se lleva a la cavidad, (Fotografia 7), procurando cubrir únicamente la dentina (muy importante) lo más pronto posible para tener tiempo de condensarla, ya que el tiempo de trabajo es aproximadamente de un minuto y quince segundos a una temperatura de 23°C. Es importante recordar que teniendo temperaturas altas se reduce el tiempo de trabajo.
Ionómeros de vidrio remineralizantes. Una alternativa de tratamiento preventivo o terapéutico.	José de Jesús Cedillo Valencia	2011	Revista ADM	GC Fuji TRIAGE Capsula De acuerdo al fabricante, después de aislar el molar se limpia la superficie oclusal (profilaxis con piedra pómez y agua destilada) de la manera usual, para después lavar con agua. Si se desea una retención extra, se recomienda aplicar GC Cavity Conditioner (durante 10 segundos), el cual se lava posteriormente con agua. Después, secar la superficie oclusal con una pequeña torunda de algodón o si se prefiere una jeringa triple con aire suave, para no desecar. Los mejores resultados se obtienen cuando las superficies preparadas están húmedas (brillantes). Antes de activar la cápsula, hay que agitarla o darle dos o tres golpecitos sobre una superficie dura, para que el polvo se suelte. Para activar la cápsula, empujar el émbolo, hasta que esté al nivel del cuerpo principal. Colocar inmediatamente en el GC aplicador y enseguida presionar la palanca. En este momento la cápsula esta activada. Nota: La cápsula debe activarse justo antes de la mezcla y utilizarse. Quitar inmediatamente la cápsula del aplicador, colocarla en una mezcladora de cementos. Mezclar por 10 segundos a una velocidad alta (aproximadamente

Valoración de la	Alaigndag Emánaz	2015	Revista	4,000 RPM). Retirar la cápsula de la mezcladora de cementos, y colocarla en el GC aplicador. Es importante, tener presente el tiempo de trabajo que es de 1 minuto y 40 segundos desde el inicio de la mezcla, a 23 °C. De acuerdo a la temperatura del lugar donde se trabaje, a mayor temperatura, menor tiempo de trabajo. Para colocar la mezcla en la superficie del diente, esparcir la capa fina del GC Fuji TRIAGE® directamente sobre la superficie oclusal, con un microbrush® o con un pincel. Si se desea un fraguado más rápido, utilizar una lámpara de fotopolimerizado de QTH, por 20 a 40 segundos. Se debe colocar la lámpara de polimerización tan cerca como sea posible de la superficie del cemento. Esta función sólo es para el color rosa. Después de fotocurar se recomienda proteger la superficie con un barniz, o cuando el material comience a perder su apariencia brillante Se deben colocar tres capas de barniz GC Fuji Varnish® consecutivas, cada capa con su previo secado con aire de la jeringa triple, o también se puede colocar el GC Fuji COAT LC® y luego Fotopolimerizar.
microfi ltración del ionómero de vidrio mejorado (Ketac Molar Easymix®) con o sin el uso de acondicionador	Alejandra Jiménez Arribas,Adolfo Yamamoto Nagano	2013	odontológica Mexicana	Ketac Molar Easymix La proporción de la mezcla es una cucharada del polvo, por una porción de líquido (dos gotas). Debe ser mezclado a una temperatura ambiente de 20-25 o C. La porción del polvo debe ser mezclada con el líquido de una sola intención. Durante la aplicación y la fase de fraguado, el campo de trabajo debe ser protegido contra el exceso de agua y saliva. A una temperatura ambiente de 23 o C y a una humedad de aire relativa del 50%, los tiempos a considerar son los siguientes: mezclado 30 segundos, elaborado 10 segundos, fraguado 7 minutos.
Ionómero de vidrio: el cemento dental de este siglo	Tomás de la Paz Suárez	2016	Revista odontológica Mexicana	Proporciones clínicas: Restauración: 2 de polvo y 1 de líquido. Protección cavitaria: 1 polvo 1 de líquido. Cementación: 1 de polvo 2 de líquido. Agitar el frasco, usar las medidas de polvo y líquido según el fabricante, utilizar una placa de vidrio grueso y frío, colocar el líquido perpendicular a la placa de vidrio, mezclar de 20 /30

				segundos con una espátula metálica o plástica. Los ionómeros de vidrio fotopolimerizables endurecen a los 20–30 segundos y los autopolimerizables tardan 2–3 min. En cambio los convencionales demoran 4–7 minutos, debido a que contienen más aluminio para que sea menos soluble
Hibridación a esmalte y dentina de los ionómeros de vidrio de alta densidad, estudio con MEB.	José de Jesús Cedillo Valencia,Alejandra Herrera Almanza, Rurik Farías Mancilla	2017	Revista ADM	De los cuatro grupos estudiados, el EQUIA FiL y el EQUIA Forte fueron los que presentaron excelente adaptación marginal, hibridación al esmalte y dentina, resaltando que los del grupo 4 (EQUIA Forte) resultaron tener la mejor adaptación marginal que cualquier otro ionómero de vidrio incluido en este estudio.

DECLARACIÓN Y AUTORIZACIÓN

Yo, Coronado Rivas Elena Cristina, con C.C: # 0941277105 autora del trabajo de titulación: Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión Sistemática, previo a la obtención del título de odontóloga en la Universidad Católica de Santiago de Guayaquil.

- 1.- Declaro tener pleno conocimiento de la obligación que tienen las instituciones de educación superior, de conformidad con el Artículo 144 de la Ley Orgánica de Educación Superior, de entregar a la SENESCYT en formato digital una copia del referido trabajo de titulación para que sea integrado al Sistema Nacional de Información de la Educación Superior del Ecuador para su difusión pública respetando los derechos de autor.
- 2.- Autorizo a la SENESCYT a tener una copia del referido trabajo de titulación, con el propósito de generar un repositorio que democratice la información, respetando las políticas de propiedad intelectual vigentes.

Guayaquil, 9 de marzo del 2021

Nombre: Coronado Rivas Elena Cristina

eau Coronado

C.C: 0941277105

REPOSITORIO NACIONAL EN CIENCIA Y TECNOLOGÍA						
FICHA DE REGIS	FICHA DE REGISTRO DE TESIS/TRABAJO DE TITULACIÓN					
TEMA Y SUBTEMA:	Evolución de cementos ionómeros de vidrio en odontopediatría. Revisión sistemática.					
AUTOR(ES)	Elena Cristina Coronado Rivas					
REVISOR(ES)/TUTOR(ES)	María José Cabrera Davila					
INSTITUCIÓN:	Universidad Católica de Santiago de Guayaquil					
FACULTAD:	Ciencias Médicas					
CARRERA:	Odontología					
TITULO OBTENIDO:	Odontóloga					
FECHA DE PUBLICACIÓN:	9 de marzo del 2021 No. DE PÁGINAS: 27					
ÁREAS TEMÁTICAS:	Odontopediatría					
PALABRAS CLAVES/	Ionómero de vidrio, liberación de flúor, fuerza de flexión, fuerza de					
KEYWORDS:	compresión, modo de preparación.					
DECLIMENTA DOTO A CT.						

RESUMEN/ABSTRACT:

Introducción: El cemento ionómero de vidrio o polialquenolato de vidrio ha evolucionado con el pasar de los años. Wilson y Kent inventaron un nuevo material para el uso odontológico, aquel material se centró en la reacción del aluminosilicato con el ácido poliacrílico, una vez mezclados estos materiales obtuvieron un producto llamado originalmente ASPA (Aluminio, Silicato y PoliAcrilato), que fue el primer cemento ionómero de vidrio. El cemento ionómero de vidrio tuvo cambios en la composición química dando lugar a mejores resultados en las propiedades físicas, químicas y mecánicas. Objetivos: Analizar la evolución de cementos de ionómero de vidrio en odontopediatría Materiales y métodos: Éste estudio se basó en fuentes documentales de donde se obtuvo la información para el siguiente estudio, se lo realizó a través de los buscadores como Pubmed y Cochrane. En cuanto a los criterios de inclusión y exclusión, permanecieron 31 artículos científicos la cual nos permitió estudiar las siguientes variables: fuerza de flexión, fuerza de compresión, composición química y modo de preparación Resultados: los cementos ionómeros de vidrio modificados con resina tienen mayor fuerza de flexión y compresión desde el año 1993. La liberación de flúor es mayor en los cementos modificados con resina, la liberación de flúor es mayor en las primeras 24 horas, luego disminuyen y se mantiene de manera constante. En cuanto al modo de preparación se modificó para beneficio del odontólogo y paciente Conclusión: Los cementos ionómeros de vidrio fueron modificados para mejorar las propiedades químicas, físicas y mecánicas para beneficio del odontólogo y paciente. Palabras Claves: ionómero de vidrio, liberación de flúor, fuerza de flexión, fuerza de compresión, modo de preparación.

ADJUNTO PDF:	⊠ SI		□ NO			
CONTACTO CON AUTOR/ES:	Teléfond +593 996		E-mail: elenita95coronado@outlook.com			
CONTACTO CON LA	Nombre	: Dr. Pino Larrea	Dr. Pino Larrea José Fernando			
INSTITUCIÓN	Teléfond	Teléfono: +593 962790062				
(C00RDINADOR DEL PROCESO UTE)::	E-mail:	E-mail: jose.pino@cu.ucsg.edu.ec				
SECCIÓN PARA USO DE BIBLIOTECA						
N°. DE REGISTRO (en bas	se a datos):					
N°. DE CLASIFICACIÓN:						
DIRECCIÓN URL (tesis en la web):						
·		·	· · · · · · · · · · · · · · · · · · ·			