

TEMA:

Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática.

AUTOR:

Toral Benalcazar, Jenniffer Thalia

Trabajo de titulación previo a la obtención del título de ODONTÓLOGA

TUTORA:

Dra. Ocampo Poma, Estefanía del Rocío

Guayaquil, Ecuador

15 de Septiembre del 2021

CERTIFICACIÓN

Certificamos que el presente trabajo de titulación, fue realizado en su totalidad por **Toral Benalcazar**, **Jenniffer Thalia**, como requerimiento para la obtención del título de **Odontóloga**.

TUTORA

Dra. Ocampo Poma, Estefanía del Rocío

DIRECTOR DE LA CARRERA

f.

Dra. Bermúdez Velásquez, Andrea Cecilia

Guayaquil, a los 15 del mes de Septiembre del año 2021

DECLARACIÓN DE RESPONSABILIDAD

Yo, Toral Benalcazar, Jenniffer Thalia

DECLARO QUE:

El Trabajo de Titulación, **Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática** previo a la obtención del título de **Odontóloga**, ha sido desarrollado respetando derechos intelectuales de terceros conforme las citas que constan en el documento, cuyas fuentes se incorporan en las referencias o bibliografías. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance del Trabajo de Titulación referido.

Guayaquil, a los 15 del mes de Septiembre del año 2021

LA AUTORA

f.____

Toral Benalcazar, Jenniffer Thalia

AUTORIZACIÓN

Yo, Toral Benalcazar, Jenniffer Thalia

Autorizo a la Universidad Católica de Santiago de Guayaquil a la **publicación** en la biblioteca de la institución del Trabajo de Titulación, **Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática**, cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.

Guayaquil, a los 15 del mes de Septiembre del año 2021

LA AUTORA:

f.____

Toral Benalcazar, Jenniffer Thalia

REPORTE DE URKUND

Document Information

Analyzed document articulo tesis.docx (D111891987)

Submitted 8/31/2021 10:52:00 PM

Submitted by Estefania del Rocío Ocampo Poma

Submitter email estefania.ocampo@cu.ucsg.edu.ec

Similarity 09

Analysis address estefania.ocampo.ucsg@analysis.urkund.com

Sources included in the report

AGRADECIMIENTO:

En primer lugar, agradezco a Dios por permitirme culminar esta etapa, por su amor y misericordia.

A mi papá, a pesar de las adversidades presentes en el camino, confiaste en mí, y fuiste quien me encaminó y sugirió estudiar esta hermosa carrera, gracias por ser la primera persona en creer en mí, sin su ayuda esto no hubiera sido posible, te amo mucho papito.

A mi hermana Janneth, gracias por siempre apoyarme en todo, también gracias a su ayuda pude culminar mi carrera, te amo ñaña.

A mi esposo Dennys gracias por ser mi compañero de vida incondicional, también por ser mi paciente y ayudarme en buscar pacientes, te amo.

Agradezco a Doménica, Sol e Israel por su apoyo como compañeros de clases y amistad, fue muy agradable compartir y vivir esta experiencia junto a ustedes.

Agradezco sinceramente a mi tutora de tesis la Dra. Estefanía Ocampo Poma, por su tiempo, ayuda y guía para elaborar el presente trabajo de investigación.

También un especial agradecimiento a todos los docentes que he conocido a lo largo de estudiar esta hermosa carrera, gracias por transmitirme sus conocimientos y también por su exigencia en mi formación.

Toral Benalcazar, Jenniffer Thalia

DEDICATORIA:

Dedico este logro alcanzado con todo mi corazón; a mi mamá Cecilia Benalcazar a pesar de no estar físicamente junto a mí, siempre la tengo presente en mis pensamientos y corazón, con todo mi amor te dedico este trabajo mamita.

A mi papá, mis hermanos Janneth, Omar y a mis queridos sobrinos.

A mi esposo Dennys, quien es testigo de la dedicación que emplee para llegar a la meta.

A mi hijo Benjamin, tú eres mi gran motivación y me impulsas cada día a superarme, esta etapa no ha sido fácil, pero tenerte ha cambiado mi vida, y me ha dado una mejor perspectiva, te dedico este trabajo con mucho amor.

Y también a todas las personas que me han apoyado y han hecho posible la culminación de esta etapa.

Toral Benalcazar, Jenniffer Thalia

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL

FACULTAD DE CIENCIAS MÉDICAS CARRERA DE ODONTOLOGÍA

TRIBUNAL DE SUSTENTACIÓN

f
Dra. Bermúdez Velásquez, Andrea Cecilia
DECANO O DIRECTOR DE CARRERA
f
Dr. Pino Larrea, José Fernando
OORDINADOR DEL ÁREA O DOCENTE DE LA CARRERA
f
Dra. Valdiviezo Gilces, María Jose
OPONENTE

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL

FACULTAD DE CIENCIAS MÉDICAS
CARRERA DE ODONTOLOGÍA

CALIFICACIÓN

TUTORA

f. _____

Dra. Ocampo Poma, Estefanía del Rocío

Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática

Effect of hydrofluoric acid etching on lithium disilicate ceramics. Systematic review.

Toral Benalcazar, Jenniffer Thalia1; Ocampo Poma, Estefanía del Rocío2.

Resumen

Introducción: La cerámica de disilicato de litio es un material que necesita un acondicionamiento previo para crear rugosidades necesarias para colocar el cemento. El ácido fluorhídrico es considerado el Gold standard, actualmente este ácido está disponible en distintas concentraciones y es aplicado en diferentes tiempos, de esto va a depender la rugosidad y la resistencia a la flexión de la cerámica. Objetivo: Determinar el efecto del grabado con ácido fluorhídrico en diferentes concentraciones y tiempos de grabado en el aspecto superficial y la resistencia de las cerámicas de disilicato de litio. Materiales y métodos: El presente trabajo de investigación es una revisión sistemática, se encontraron 340 artículos, luego se descartaron varios artículos según los términos de inclusión y exclusión quedando un total de 41 artículos, que se utilizaron para esta investigación. Resultados: En 32 artículos concordaron que el tiempo de grabado ideal es de 20 segundos, en 19 artículos se encontró que la concentración de ácido fluorhídrico ideal es al 5%, en 22 de 39 artículos indicaron que el mejor método de procesamiento de las cerámicas es el IPS e.Max CAD, los mayores niveles de rugosidad en las cerámicas fueron las cerámicas grabadas con ácido al 9.6% por 60 segundos y las cerámicas de disilicato de litio grabadas al 5% por 20 segundos dieron el mejor resultado en la resistencia a la flexión entre 370 a 460 MPa. Conclusiones: Es necesario que las cerámicas de disilicato de litio sean grabadas con ácido fluorhídrico al 5%, por un tiempo de grabado de 20 segundos, este protocolo no va a tener un efecto negativo en la resistencia a la flexión de la cerámica.

Palabras claves: Ácido fluorhídrico, disilicato de litio, tiempo de grabado, concentración del ácido, efecto, rugosidad, resistencia a la flexión.

Effect of hydrofluoric acid etching on lithium disilicate ceramics. Systematic review.

Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática

Toral Benalcazar, Jenniffer Thalia¹; Ocampo Poma, Estefanía del Rocío².

Abstract

Introduction: Lithium disilicate ceramic is a material that needs pre-conditioning to create the roughness necessary to place the cement. Hydrofluoric acid is considered the gold standard, currently this acid is available in different concentrations and is applied at different times, the roughness and flexural strength of the ceramic will depend on this. **Objective:** To determine the effect of etching with hydrofluoric acid at different etching concentrations and times on the surface appearance and resistance of lithium disilicate ceramics. **Materials and methods:** This research is a systematic review, 340 articles were found, then several articles were discarded according to the inclusion and exclusion terms, leaving a total of 41 articles, which were used for this research. **Results:** In 32 articles they agreed that the ideal etching time is 20 seconds, in 19 articles it was found that the ideal hydrofluoric acid concentration is 5%, in 22 of 39 articles they indicated that the best method of processing ceramics is For IPS e.Max CAD, the highest levels of roughness in the ceramics were the ceramics etched with 9.6% acid for 60 seconds and the lithium disilicate ceramics etched at 5% for 20 seconds gave the best result in resistance to abrasion. bending between 370 to 460 MPa. **Conclusions:** It is necessary for lithium disilicate ceramics to be etched with 5% hydrofluoric acid, for an etching time of 20 seconds, this protocol will not have a negative effect on the flexural strength of the ceramic.

Keywords: Hydrofluoric acid, lithium disilicate, etching time, acid concentration, effect, roughness, flexural strength

¹Estudiante de la Universidad Católica Santiago de Guayaguil,

²Especialista en Prótesis Dental. Máster Universitario en Investigación Odontológica. Docente de la Universidad Católica de Santiago de Guayaquil.

¹Universidad Católica Santiago de Guayaquil student,

²Dental Prosthesis Specialist. University Master's Degree in Dental Research. Universidad Católica de Santiago de Guayaquil professor

Introducción

varios Durante años ha investigado sobre el efecto y la importancia del grabado con ácido fluorhídrico en las cerámicas de litio, disilicato de siendo cuestionado la utilización de ácido fluorhídrico en esta cerámica debido a su alta toxicidad y al daño puede ocasionarle a que cerámica de disilicato de litio haciéndola más porosa. Actualmente existen varios geles de ácido fluorhídrico en distintas concentraciones, que se aplican en diferentes tiempos de grabado, creando múltiples efectos en las cerámicas tanto como en aspecto superficial aumentando o disminuyendo la rugosidad y la resistencia a la flexión del material cerámico provocando mayor o menor fragilidad en la cerámica. El disilicato de litio es una cerámica vítrea, tiene un 60-70% de cristales incluidos en una matriz vítrea, con alta resistencia mecánica^{1,2,3}, está compuesto de cuarzo, dióxido de litio, óxido de fósforo, alúmina, óxido de potasio, otros componentes², la superficie cerámica no tratada es lisa y homogénea por lo que es necesario crear microporosidades mediante el grabado con ácido fluorhídrico². El disilicato de litio es usado en restauraciones inlays, onlays, carillas. dientes coronas en anteriores y posteriores, prótesis fijas de 3 unidades^{2,4}. Para evitar la probabilidad de exposición al ácido fluorhídrico y hacerlo más visible se agregaron colorantes para que el producto sea visible⁵. Debemos saber que el ácido fluorhídrico ataca la fase vítrea y cambia la topografía de la superficie cerámica aumentando la rugosidad. haciendo que sea retentiva para una adhesión micromecánica, lo que mejora la unión entre la cerámica y el cemento resinoso^{6,7,8}. El uso de ácido fluorhídrico mejora la resistencia de la unión resina y disilicato de litio⁹. Existen diferentes concentraciones de ácido fluorhídrico al 3%, 4,50%, 4,60%, 4,80%, 4.90%, 5%, 7.5%, 9%, 9,50%, 9,60% y $10\%^{1,2,6,11,12,13,14}$. siendo las más utilizadas 5% y 10%^{5,15}.

Zogheib L y cols en 2011 realizaron un estudio con 75 muestras de cerámica de litio grabándolas con

distintas concentraciones de ácido fluorhídrico a distintos tiempos mostraron que el aumento del tiempo de grabado de fluorhídrico afectó la rugosidad de la superficie y la resistencia a la flexión de la cerámica¹⁰. Septímio MD y col. en 2017 determinaron en un estudio con 336 muestras observaron que en las restauraciones con disilicato de litio fueron tratadas superficies con ácido fluorhídrico presentaron una baja resistencia de adhesión, en cambio las superficies ácido que se trataron con fluorhídrico observaron se incremento importante en la fuerza de unión, incluso sin aplicar silanos previamente¹¹. Rontani y cols en 2017 determinaron la que concentración y tiempo de grabado con HF produce un efecto sobre las características de unión de la vitrocerámica de disilicato de litio. A medida disminuyó que el porcentaje de ácido fluorhídrico, el tiempo de acondicionamiento tuvo que aumentarse para una mayor fuerza de unión. El tratamiento superficial adecuado de la vitrocerámica se logró con la

concentración de HF del 5% aplicada durante 20 segundos¹⁴.

Es importante conocer los efectos del grabado en las cerámicas de disilicato de litio ya que este material es muy usado debido a su alta estética y resistencia, es muy importante conocer los tiempos de grabado y la concentración de ácido fluorhídrico que debemos utilizar que para nuestra restauración tenga mayor longevidad. Basados en distintos estudios, el acondicionamiento de la cerámica de disilicato de litio con ácido fluorhídrico es el Gold standard por lo que es el mejor material para acondicionar, y así cerámica, preparar la luego cementar la cerámica al sustrato dental, para lograr la longevidad del tratamiento, es de vital importancia grabar la cerámica previamente, ya que la cerámica sin grabar por sí sola no es retentiva.

El propósito de esta investigación es determinar el efecto del grabado con ácido fluorhídrico en diferentes concentraciones y tiempos de grabado en el aspecto superficial y la resistencia de las cerámicas de disilicato de litio.

Materiales y métodos

Criterios para la selección de artículos

El presente trabajo de investigación es una revisión sistemática, tipo transversal, retrospectivo, de enfoque cualitativo con diseño descriptivo no experimental.

Los resultados conseguidos filtraron según los criterios inclusión y exclusión determinados en este trabajo de investigación, se incluveron artículos científicos publicados entre el año 2007 hasta el 2020, artículos que mencionen al acido fluorhídrico, porcentajes de ácido fluorhídrico, acción del ácido fluorhídrico en las cerámicas de disilicato de litio, tiempo de grabado ácido fluorhídrico las con en cerámicas de disilicato de litio, resistencia a la flexión y rugosidad superficial de las cerámicas de disilicato de litio después grabado con ácido fluorhídrico. Como criterios de exclusión se descartaron artículos publicados antes del año 2007, artículos no basados en el efecto del ácido fluorhídrico en las cerámicas de disilicato de litio, artículos que no mencionan al ácido fluorhídrico y

que no mencionan a las cerámicas de disilicato de litio.

Fuentes de información

La búsqueda de información se basó en artículos científicos mediante buscadores como Pubmed, Elsevier, Science direct, Cochrane.

Búsqueda

Se filtró utilizando las siguientes palabras claves "hydrofluoric-acid" AND "lithium-disilicate" AND "acidetching".

Proceso de selección de datos

Los datos se seleccionaron por la autora de forma independiente, consultando y aclarando dudas con su respectivo tutor.

Elementos de los datos

Se consideraron las siguientes variables independientes:

- Porcentaje de ácido fluorhídrico
- Tiempo de grabado ácido
- Método de procesamiento
- Rugosidad superficial
- Resistencia a la flexión
- Síntesis de los resultados

La síntesis de los resultados de cada artículo se realizó

manualmente por la autora tras la lectura del texto completo.

Resultados

Selección de estudios

El análisis bibliográfico se realizó mediante un diagrama de flujo PRISMA (Figura 1) para la revisión sistemática.

Se encontraron 340 artículos, entre ellos, estudios de metaanálisis, revisión sistemática, estudios clínicos aleatorios, filtrados por palabras claves, se eliminaron 125 artículos porque estaban repetidos, luego se eliminaron 9 artículos por no presentar el texto completo. Los artículos se depuraron basados en los criterios de inclusión y exclusión, eliminándose 84 artículos después de la selección manual y revisión completa se excluyeron 81 artículos, dando como resultado 41 artículos aptos para el presente trabajo de investigación.

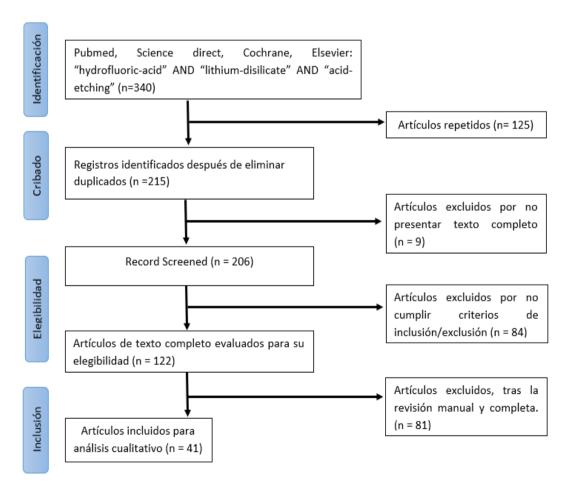


Figura 1. Diagrama de flujo PRISMA. Síntesis de análisis bibliográfico.

Características de los estudios

No todos los artículos utilizaron los mismos métodos para la medición y criterios a estudiar.

Para el análisis y obtención de resultados, el estudio se dividió por variables: Tiempo de grabado ácido (Gráfico 1); Porcentaje de ácido fluorhídrico (Gráfico 2); Método de procesamiento (Gráfico 3); Rugosidad superficial (Tabla 1); Resistencia a la flexión (Tabla 2) para obtener un promedio.

Se recolectó la información de cada artículo para cada variable para la obtención de los resultados.

Los resultados obtenidos de la variable de estudio porcentaje de ácido fluorhídrico (Gráfico 1); se encontró que 32 artículos de los 40 artículos utilizados, es decir, el 80% de los artículos indican que el tiempo de grabado óptimo es de 20 segundos en concentraciones al 3%, 4%, 4.5%, 5%, 7.5%,10%1,2,3,4,5,7,8,9,10,11,12,13,14,15,16, 17,19,20,21,22,23,24,25,26,27,29,33,34,36,37,38,

provocando micro retenciones adecuadas en la superficie de la cerámica, sin causar fragilidad en la cerámica, en comparación con el grupo control sin grabado ácido y con diferentes concentraciones de ácido fluorhídrico.



Gráfico 1: Tiempo de grabado

Los resultados obtenidos en base a los estudios publicados sobre el de concentración porcentaje adecuado de ácido fluorhídrico 2), (Gráfico para el acondicionamiento de la cerámica de disilicato de litio, dio como resultado que 19 de 40 artículos recomendaran que el porcentaje de concentración de ácido fluorhídrico adecuado al sea

5%1,2,3,8,9,11,13,14,15,19,21,23,24,25,26,28,29, ^{37,38}, en 3 estudios los autores recomendaron 2 concentraciones distintas^{1,2,14}. Este resultado fue mayor al grabado con ácido fluorhídrico al 10% debido a que en algunos estudios causó debilitamiento en la cerámica o provocó que la superficie de la cerámica vuelva se lisa^{3,8,9,14,15,23,27,38}

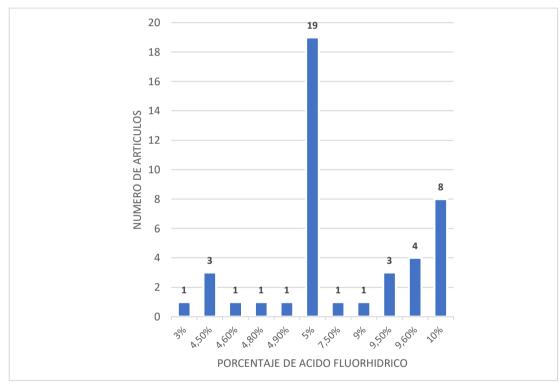


Gráfico 2: Porcentaje de ácido fluorhídrico

Los resultados obtenidos basado en los estudios que analizaron el método de procesamiento de las cerámicas de disilicato de litio (Gráfico 3), se encontró que el mayor método de elaboración de las cerámicas fue el IPS e. Max

CAD, que viene en forma de un bloque y se lo utiliza en un sistema de diseño y fabricación asistidos por un ordenador, este método de procesamiento es el que más se utilizó y más recomendaron su uso en los estudios, debido a sus

mejores propiedades mecánicas y ópticas que imitan a los dientes naturales y la precisión de ajuste^{1,2,3,4,5,6,8,9,10,11,13,17,19,21,24,25,27}, 33,34,36,39,40

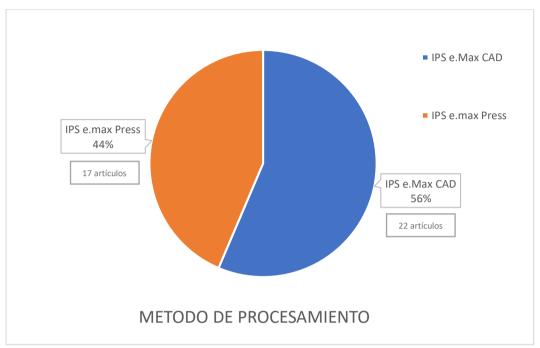


Gráfico 3: Método de procesamiento

Dentro de los resultados obtenidos sobre la rugosidad superficial de las cerámicas de disilicato de litio después del grabado con ácido fluorhídrico (Tabla 1), se encontró mayores niveles que los rugosidad en la cerámica fueron las cerámicas grabadas con ácido al 9.6% por 60 segundos con 3,0250+-0,24081µm³⁰ las cerámicas grabadas al 10% de ácido fluorhídrico por 40 segundos con una rugosidad superficial 2,05 ± 0,107 µm40, la rugosidad está relacionada con las pequeñas desviaciones micro geométricas

respecto a la superficie nominal, con poco espacio entre ellas, y depende del material los conformación. procesos de la rugosidad superficial puede disminuir debido a que un exceso de grabado puede destruir los cristales. provocando que superficie cerámica quede lisa o también el poco tiempo de grabado o un porcentaje menor de ácido fluorhídrico puede no provocar las microporosidades en la superficie de la cerámica para la unión al cemento.

Tema: Rugosidad superficial después del grabado con ácido fluorhídrico.										
N° CITA	AUTOR	PORCENTAJE DE ACIDO FLUORHIDRICO	TIEMPO DE GRABADO	RUGOSIDAD SUPERFICIAL						
10	ZOGHEIB LUCAS, ALVARO DELLA, ESTEVAO KIMPARA, JOHN MCCABE	4.90%	20s	0,09 ± 0,05 μm						
16	XIAOPING LUO, DONGGENG REN, SILIKAS NICK	9.50%	20s	0,2418 ± 0.0236 μm						
24	Prochnow C, Venturini AB, Grasel R, Bottino MC & Valandro LF	5%	20s	0,1372 +-0,07 µm						
27	Hailan Q, Lingyan R, Rongrong N, Xiangfeng M.	9.50%	20s	0,38+-0,11 μm						
30	Mallikarjuna D, Kumar S, Shetty S, Shetty M, Raj B.	9.60%	60s	3,0250+-0,24081						
32	STRAFACE ANTONIO, RUPPI LENA, GINTAUTE AISTE, FISCHER JENS, ZITZMANN NICOLA, ROHR NADJA	9%	30s	0,5 ± 0,1 μm						
38	RAVIKUMAR RAMAKRISHMAIAH, ABDULAZIZ ALKHERAIF, DARSHAN DEVANG, ET AL	5%	20s	0,21 +- 0,030 μm						
40	SUDRE JOAO, SALVIO LUCIANA, BAROUDI KUSAI, SALLES BRUNO, MELO CLAUDIO.	10%	40s	2,05 ± 0,107 μm						

Los seis estudios que analizaron la resistencia a la flexión de las cerámicas de disilicato de litio luego del grabado con ácido fluorhídrico (Tabla 2) dieron resultados similares de resistencia a la flexión del material pero las cerámicas de disilicato de litio grabadas al 5% por 20 segundos dio el mejor resultado,

370 a 460 MPa de resistencia a la flexión, por lo que es método de grabado adecuado para acondicionar las cerámicas de disilicato de litio, y es considerado como el método de grabado Gold standard para el acondicionamiento de las cerámicas de disilicato de litio²³.

	Tema: Resistencia a la flexión de las cerámicas de disilicato de litio luego del grabado con ácido fluorhídrico								
N° CITA	AUTOR	PORCENTAJE DE ACIDO FLUORHIDRICO	TIEMPO DE GRABADO	RESISTENCIA A LA FLEXION					
10	ZOGHEIB LUCAS, ALVARO DELLA, ESTEVAO KIMPARA, JOHN MCCABE	4.90%	20s	367 ± 68 MPa					
16	XIAOPING LUO, DONGGENG REN, SILIKAS NICK	9.50%	20s	347 ± 43 MPa					
21	Menees TS, Lawson NC, Beck PR, Burgess JO.	5%	20s	343 MPa					
23	ZARONE FERNANDO, DI MAURO MARIA, AUSIELLO PIETRO, RUGGIERO GENNARO	5%	20s	370 a 460MPa					
24	Prochnow C, Venturini AB, Grasel R, Bottino MC & Valandro LF	5%	20s	308,36 ± 59,1 MPa					
32	STRAFACE ANTONIO, RUPPI LENA, GINTAUTE AISTE, FISCHER JENS, ZITZMANN NICOLA, ROHR NADJA	9%	30s	348 MPa					

Discusión

Luego del análisis y obtención de resultados, en la presente revisión, se realizó una comparación de evidencias obtenidas.

El grabado con ácido fluorhídrico es un protocolo sensible con la concentración y tiempo de grabado como variables que juegan un papel importante en los valores de rugosidad superficial y resistencia a la flexión en las cerámicas de disilicato de litio.

Tiempo de grabado

Zogueib y cols 2011 en su estudio con 70 muestras de cerámica de litio IPS e. Max CAD, grabadas al 4.9% en diferentes tiempos de grabado, concluyeron medida que aumentaba el tiempo de grabado se reduio significativamente la resistencia a la flexión y aumentó la rugosidad de la superficie cerámica¹⁰. En esto concuerda Xiaoping y cols 2014, en su estudio determinaron que a medida que aumenta el tiempo de grabado la cerámica se debilita, comparado con el tiempo grabado durante 20 segundos que dio un mejor resultado16.

Rontani y cols 2017 indican que a medida que disminuye la concentración de ácido fluorhídrico, se debe aumentar el tiempo de grabado para tener una mayor exposición de los cristales de disilicato de litio, recomiendan el grabado por 20 segundos al 5% porque es más eficaz en el consultorio clínico¹⁴.

Ravikumar y cols concluyeron que el grabado por tiempos más largos da como resultado un mayor número y ancho de los poros, y el ancho de los poros aumenta a un ritmo más rápido que la profundidad, aumentando la rugosidad de la superficie y la humectabilidad de las cerámicas³⁸.

Porcentaje concentración de ácido fluorhídrico

Prochnow y cols, Sudre y cols concluyeron que las concentraciones de ácido fluorhídrico como el grabado al 10% influyen más, independiente del tiempo de grabado, debido a que proporciona una mayor fuerza de unión^{13,40}.

Rontani y cols en su estudio detectaron un predominio de fallas adhesivas en las cerámicas que se grabaron con ácido fluorhídrico al 1% y 2.5% independiente de los tiempos de grabado ^{2,14}. En esto difiere Prochnow y cols ya que, en otro estudio. aplicó distintas concentraciones de ácido fluorhídrico 1% del al 10% determinando que la fiabilidad del material no se vio afectada dando valores similares en rugosidad y resistencia a la flexión²⁴.

Prochnow y cols determinaron que las concentraciones de ácido fluorhídrico al 5% y 10% crearon en la cerámica superficies más irregulares y porosas, mientras que al 1% no pudo cambiar la rugosidad de la superficie que las cerámicas no grabadas².

Sunfeld y cols recomiendan que para no usar concentraciones altas de ácido fluorhídrico se realice un tratamiento térmico previo y se la cerámica con ácido grabe fluorhídrico al 5%34. En esto difiere Ramp y cols, estos autores recomiendan grabar las cerámicas de disilicato de litio con ácido fluorhídrico al 9.5% por segundos ya que aumenta la fuerza de unión⁹.

19 estudios concordaron en que el porcentaje de concentración ideal para el grabado es al 5%, debido a que proporciona un mayor enclavamiento del cemento en la cual se obtuvo una mayor fuerza de unión.

Método de procesamiento

Verissimo y cols concluyeron y recomiendan que las cerámicas de disilicato de litio fabricadas con el sistema CAD sean grabadas con a ácido fluorhídrico al 10% durante 60 segundos debido а que provocan mayor rugosidad superficial mostrando una mayor fuerza de unión con el cemento resinoso¹.

Yukinori y cols en su estudio realizado con 120 muestras de cerámicas de disilicato de litio IPS e. Max Press, concluyeron que, aunque el grabado con ácido fluorhídrico dio mejores resultados de fuerza de unión que el ácido fosfórico, consideraron que mejor es el uso de ácido fosfórico más silano, debido a que es una sustancia menos peligrosa³.

Según Prochnow y cols las cerámicas IPS e. Max CAD son producidas con menos defectos

que el método mecanizado que produce defectos en las superficies cerámicas y provoca una disminución de la resistencia mecánica⁸.

Rugosidad superficial después del grabado con ácido fluorhídrico

Bajraktarova y cols determinaron que el método de grabado más eficaz es con ácido fluorhídrico ya que proporciona una superficie porosa que permite el enclavamiento del cemento⁵.

Ravikumar y cols concluyeron que existe una correlación positiva entre la rugosidad de la superficie y la humectabilidad: un aumento en la rugosidad de la superficie mejora la humectabilidad³⁸.

Xiaping y cols, Hailan y cols obtuvieron valores más altos de rugosidad superficial al grabar la cerámica al 9.5% por 20 segundos, pero si aumentaban unos segundos más el tiempo de grabado, la cerámica se volvía más débil^{16,27}.

En esto difieren Prochnow y cols, Ravikumar y cols ya que en sus estudios determinaron que el grabado ácido al 5% por 20 segundos provoca una mejor adaptación en la superficie cerámica dando como resultado valores de micras más altos en los parámetros de rugosidad superficial y no afectando la dureza de la cerámica^{24,38}.

Resistencia a la flexión

Straface y cols en su estudio comprobó que el grabado con ácido fluorhídrico al 9% por 30 segundos da una mayor resistencia a la flexión a la cerámica³².

Mientras estos autores Mennees y cols, Zarone y cols, Prochnow y obtuvieron cols, resultados similares concluyendo que grabado ácido al 5% por 20 segundos da una mayor resistencia a la flexión en la cerámica de disilicato de litio^{21, 23, 24, 32}, dando valores más altos que el estudio de Straface.

Xiaoping y cols, evaluaron la resistencia a la flexión de las cerámicas concluyendo que el grabado por 20 segundos tuvo la mayor resistencia a la flexión, comparado con el resto de los grupos y el grupo control sin grabado¹⁶. En lo que si concuerdan todos los autores es que el tiempo

de grabado ideal que no debilita la cerámica, es de 20 segundos^{10,16,21,23,24,32}.

Limitaciones

En el presente estudio no se encontraron muchos datos sobre resistencia a la flexión o rugosidad superficial de las cerámicas de disilicato de litio, por lo que se recomienda realizar más estudios sobre estos temas a futuro.

CONCLUSIONES

Los resultados de este estudio indicaron que el porcentaje de concentración de ácido fluorhídrico ideal para grabar las cerámicas de litio es al 5% durante 20 segundos, con el sistema IPS e. Max CAD que brinda una mayor resistencia a la debilita flexión porque no la cerámica. sino las que crea microporosidades adecuadas para que el cemento pueda penetrar y poder cementar la cerámica al sustrato dental.

REFERENCIAS

 Veríssimo A, Moura D, Tribst J, Araújo A, Leite F, Souza R. Effect of hydrofluoric acid concentration and etching time on resin-bond strength to different glass ceramics. Braz Oral Res.

- [Internet]. 2019 [Citado el 20 de mayo del 2021]; 33:41. Disponible en: https://doi.org/10.1590/1807 -3107bor-2019.vol33.0041
- 2. Prochnow C, Venturini AB, Grasel R, Gundel A, Bottino MC, Valandro LF. Adhesion to a Lithium Disilicate Glass Ceramic Etched with Hydrofluoric Acid at Distinct Concentrations. Revista Dental Brasileña. [Internet]. 2018 [Citado el 20 de Mayo del 2021]; 29 (5): 492-499. Disponible http://dx.doi.org/10.1590/01 03-6440201802080
- 3. Yukinori. M. Goro. Masao, I. Kumiko, Y. Does acid etching morphologically and chemically affectlithium disilicate glass ceramic surfaces. Brazilian dental [Internet]. journal. 2017 [Citado el 20 de Mayo del 2021]
- Cruz AC, Delgado E. Alternativas de tratamientos de superficie para adhesión de cerámica de disilicato de litio. Revista Cubana de Estomatología. [Internet]. 2018 [Citado el 20 de mayo del 2021]; 55 (1): 59-72. Disponible en: http://scielo.sld.cu
- Bajraktarova, E., Grozdanov, A. Gigovski, N. et al. Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, part 1: Acids,

- Application Protocol and Etching Effectiveness. Open Access Macedonian Journal of Medical Sciences. [Internet]. 2018 [Citado el 20 de Mayo del 2021]
- 6. Maawadh, A. Almohareb, T. Hamdam, R. et al. Repair strength and surface topography of lithium disilicate and hybrid resin ceramics with LLLT and photodynamic therapy comparison to hydrofluoric acid. Journal off applied biomaterials and functional materials. [Internet]. 2020 [Citado el 20 de Mayo del 2021]
- 7. Garboza. C. Berger, S. R. Guiraldo. Fugolin, Gonini-Júnior A. Murilo, S. Influence of Surface Treatments and Adhesive Systems on Lithium Disilicate Microshear Bond Strength. [Internet]. 2016 [Citado el 20 de Mayo del 2021]; 40: 271-276. Disponible en doi: 10.11607 / prd.3893
- 8. Prochnow C, Venturinni, A. Guilardi, L. et al. Hydrofluoric acid concentrations: Effect on the cyclic load-to-failure of machined lithium disilicate restorations. Dent Mater [Internet]. 2018 [Citado el 20 de mayo del 2021]; Disponible:
 - https://doi.org/10.1016/j.den tal.2018.06.028
- 9. Kalavacharla, V. Ramp, L. Burgess, Lawson. N.

- Influence of Etching Protocol and Silane Treatment with a Universal Adhesive on Lithium Disilicate Bond Strength Operative dentistry. [Internet]. 2015 [Citado el 20 de Mayo del 2021]; 40(2), 1-7
- 10. Zogheib, L. Dellabona, A. Kimpara, E. Mccabe, J. Effect of Hydrofluoric Acid Etching Duration on the Roughness and Flexural Strength of а Lithium Disilicate-Based Glass Ceramic. Braz Dent J. [Internet]. 2011. [Citado el 20 de mayo del 2021]; 22 (1): 45-50
- 11. Septímio MD, Rodríguez FJ, Pigozzo A, Matinlinna JP, Marins R. Innovative Surface Treatments for **Improved** Ceramic Bonding: Lithium Disilicate Glass Ceramic. IJAA. [Internet]. 2018 [Citado el 20 de mayo del 2021]; 82:60-66. Disponible https://doi.org/10.1016/j.ijad hadh.2017.12.007
- 12. Canay S, Hersek N, Ertan A. Effect of different acid treatments on a porcelain surface. J Oral Rehab. [Internet]. 2001 [Citado el 20 de mavo del 2021]; 28(1):95–101. Disponible https://scihub.se/10.1046/j.1365-2842.2001.00626.x
- 13. Prochnow, C, Venturini, A. Rocha, G. Lima, T. Bottino. M. Valandro. Concentraciones de ácido

- fluorhídrico: efecto sobre la carga cíclica hasta el fallo de las restauraciones mecanizadas de disilicato de litio. Braz Dent J. [Internet]. 2018. [Citado el 20 de mayo del 2021
- 14. Rontani, J. Sundfeld, Costa, A. Correr, A. et al. Effect of Hydrofluoric Acid Concentration and Etching Time on Bond Strength to Disilicate Lithium Glass Ceramic. Operative dentistry. [Internet]. 2017. [Citado el 20 de mayo del 2021
- 15. Matinlinna JP, Vallittu PK. Bonding of resin composites to etchable ceramic surfaces - an insight review of the chemical aspects on surface conditioning. Journal of Oral Rehabilitation. 2007. [Internet]. [Citado el 20 de Mayo del 2021]; 34:622-630.
- 16. Xiaoping, L. Donggeng, R. Silikas, N. Effect of etching time and resin bond on theflexural strength of IPS e.max Press glass ceramic. Dental materials. [Internet]. 2014. [Citado el 20 de mayo del 2021
- 17. Lise DP, Perdigão J, Van Ende A, Zidan O, Lopes GC. Microshear Bond Strength of Resin Cements to Lithium Disilicate Substrates as a of Function Surface Preparation. Operative dentistry. [Internet]. 2015.

- [Citado el 20 de Mayo del 20211
- 18. Heintze SD, Cavalleri A, Zellweger G, Buchler A y Zappini G. Fracture frequency of all-ceramic durina crowns dvnamic loading chewing in а simulator using different loading and luting protocols. Materiales dentales. [Internet]. 2008 [Citado el 20 de Mavo del 20211: 24(10):1352-1361. Disponible en: https://scihub.se/10.1016/j.dental.200
 - 8.02.019
- 19. Scherer MM, Prochnow C, Venturini AB, Rocha GK, Lima Rippe MP. TA, Valandro LF. Fatique failure adhesivelyload of an cemented lithium disilicate glass-ceramic: Conventional ceramic etching vs etch & prime one-step primer. Dent [Internet]. Mater. 2018 [Citado el 20 de mayo del 2021]; 34 (8): 1134-1143. Disponible https://doi.org/10.1016/j.den tal.2018.04.012
- 20. Sundfeld. D. Muniz. Α. Piovesan, A. Bovi, G. Rinho, L. Marcondes, L. Pfeifer, C. The effect of hydrofluoric acid and resin cement formulation on the bond strength to lithium disilicate ceramic. Brazilian oral research. . [Internet]. 2018. [Citado el 20 de Mayo del 2021]

- 21. Menees TS, Lawson NC, Beck PR, Burgess JO. Influence of particle abrasion or hydrofluoric acid etching on lithium disilicate flexural strength. Prosthet Dent. [Internet]. 2014 [Citado el 20 de Mayo del 2021]
- 22. Malament. Natto ZS. Thompson V. Rekow D. Weber HP. Ten-year survival pressed. acid-etched of lithium disilicate e.max monolithic and bilayered complete-coverage restorations: Performance and outcomes as a function of tooth position and age. JPD. [Internet]. 2018 [Citado el 20 de mayo del 2021]
- 23. Zarone, F. Di Mauro, M. Ausiello, P. Ruggiero, G. Estado actual del disilicato de litio y zirconia: una revisión narrativa. BMC oral health. [Internet]. 2019 [Citado el 20 de mayo del 2021]
- 24. Prochnow C, Venturini AB, Grasel R, Bottino MC Valandro LF. Effect of etching with distinct hydrofluoric acid concentrations the on flexural strength of a lithium disilicate-based glass ceramic. Journal of biomedical materials research В. **APPLIED** BIOMATERIALS [Internet]. 2016 [Citado el 20 de mayo del 2021];1-7 Disponible en: Doi. 105. 10.1002/jbm.b.33619.

- 25. Figueredo, F. Silva, V. Wendlinger, M. et al. Effect of Self-Etching Primer Associated to Hydrofluoric acid or Silane on Bonding to Lithium Disilicate. Braz Dent J. [Internet]. 2019. [Citado el 20 de mayo del 2021
- 26. Dos D, Bitencourt, S, Silva E, Matos A, Benez G, Rangel E, Pesqueira A, Barão V, Goiato M. (2020). Bond strength of lithium disilicate after cleaning methods of the remaining hydrofluoric acid. Journal of clinical and experimental dentistry. [Internet]. 2020 [Citado el 20 de Mayo del 2021];12(2), 103-107.
- 27. Hailan Q, Lingyan R. Rongrong N, Xiangfeng M. Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to composites. resin West China iournal of stomatology. [Internet]. 2017 [Citado el 20 de mayo del 2021]; *35*(6), 593-597. Disponible en: https://doi.org/10.7518/hxkq. 2017.06.006
- 28. Siqueira F, Campos V, Wendlinger M, et al. Effect of Self-Etching Primer Associated to Hydrofluoric acid or Silane on Bonding to Lithium Disilicate. *Braz Dent J*. [Internet]. 2019 [Citado el 20 de Mayo del 2021];30(2):171-178.

- Disponible en: https://doi.org/10.1590/0103
 -6440201902366
- 29. Lawson N, Jurado C, Huang C, et al. Effect of Surface Treatment and Cement on Fracture Load of Traditional Zirconia (3Y), Translucent Zirconia (5Y), and Lithium Disilicate Crowns. *J Prosthodont*. [Internet]. 2019 [Citado el 20 de mayo del 2021]; 28(6):659-665. Disponible en: https://doi.org/10.1111/jopr.13088
- 30. Mallikarjuna D, Kumar S, Shetty S, Shetty M, Raj B. Comparative evaluation of lithium disilicate ceramic surface and bond strength to surface dentin after treatment with hydrofluoric acid and acidulated phosphate fluoride gel: An In Vitro study. Indian J Dent Res. [Internet]. 2018 [Citado el 20 de mayo del 2021]; 29(6):794-798. Disponible en:
 - https://www.ijdr.in/article.as p?issn=0970-9290;year=2018;volume=29 ;issue=6;spage=794;epage= 798;aulast=Mallikarjuna
- 31. Shiva. A. Sooror. S. Hossein, S. et al. Comparison of lithium disilicate-reinforced glass ceramic surface treatment with hydrofluoric acid. Nd:YAG, and CO2 lasers on shear bond strength of metal brackets. CLINICAL ORAL

- INVESTIGATION [Internet]. 2020 [Citado el 20 de Mayo del 2021]
- 32. Straface, A. Ruppi, Gintaute. Α. Fischer, J. Zitzmann, N. Rohr, N HF of CAD/CAM etchina materials: influence of HF concentration and etching time on shear bond strength. BMC oral health [Internet]. 2019 [Citado el 20 de mayo del 20211
- 33. Sundfeld. D. Naves. L. Costa. A. Correr. A. Consani, S. Borges. G. Correr, L. The Effect of Hydrofluoric Acid Concentration on the Bond Strength Concentration on the Bond and Morphology of the Surface and Strength Interface of Glass Ceramics to а Resin Cement. Operative dentistry [Internet]. 2015 [Citado el 20 de mayo del 2021]
- 34. Sundfled. D. Correr. L. N. Pavesi. Coata. Α. Sundfeld, R. Marcondes, L. The Effect of Hydrofluoric Acid Concentration and Heat on the Bonding to Lithium Disilicate Glass Ceramic.Brazilian dental J. [Internet]. 2016 [Citado el 20 de mayo del 2021]
- 35. Ozcan, M. Allahbeickaraghi, A. Dundar, Possible M. hazardous effects of acid hydrofluoric and recommendations for treatment approach: а Clinical review. Oral

- Investigation. [Internet]. 2012 [Citado el 20 de mayo del 2021]
- 36. Rui Li, Shi Qing Ma, Cheng, Wen Yi, Zi Hao Liu, Yi Yu Fen G, et al. Enhanced bonding strength between lithium disilicate ceramics and resin cement by multiple surface treatments after thermal cycling. Plos One. [Internet]. 2019 [Citado el 20 de mayo del 2021]
- 37. Sai Kham, L. Tomohiro, T. Toru, N. Motohiro, U. et al. Effect of Hydrofluoric Acid Etching Duration on the Roughness and Flexural Strength of Lithium а Disilicate-Based Glass Ceramic . J od Adhesive Dentistry. [Internet]. 2018 [Citado el 20 de mayo del 2021]
- 38. Ravikumar, R. Abdulaziz, A. Darshan, D. et al. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics. International Journal of Molecular Sciences

- [Internet]. 2016 [Citado el 20 de mayo del 2021]
- 39. Guarda G. Correr Α, L, Costa Goncalves A, Borges G, Et Al. Effects of Surface Treatments. Thermocycling, and Cyclic Loading on the Bond Strength of a Resin Cement Bonded to а Lithium Disilicate Glass Ceramic. Operative Dentistry. [Internet]. 2013 [Citado el 20 de mayo del 2021]
- 40. Sudre, J. Salvio, L. Baroudi, K., Salles, B. Melo, C-Influence of surface treatments of lithium disilicate on roughness and bond strenght, International journal of prosthodontics [Internet]. 2019 [Citado el 20 de mayo del 2021].
- 41. Porto, T. Park, S. Faddoul, A. Faddoul, F. Cesar, P. Evaluation of the surface roughness and accelerated aging of cad/cam materials. International journal of prosthodontics. [Internet]. 2020 [Citado el 20 de mayo del 2021]

ANEXOS

ANEXO 1: Tabla Madre

							Porcentaje de	Tiempo			
N°	AUTORES	AÑO	7.7.11.0	DENGETA	JCR/	QUARTIL	ácido	De	Método de	Rugosidad	Resistencia a
ART.	Veríssimo A, Moura D, Tribst J, Araújo A, Leite F, Souza R.	2019	Effect of hydrofluoric acid concentration and etching time on resinbond strength to different glass ceramics	BRAZILIAN ORAL RESEARCH	SJR 0,85	Q1	5% por 20s IPS emax CAD Y 10% por 60s IPS emax Press	grabado 20Ss Y 60s	IPS e.max CAD Y IPS e.max Press	superficial	la flexión
2	PROCHNOW CATINA, VENTURINI ANDRESSA , GRASEL RAFAELLA, GUNDEL ANDRE, CICERO MARCO, VALANDRO LUIZ	2018	Adhesion to a Lithium Disilicate Glass Ceramic Etched with Hydrofluoric Acid at Distinct Concentrations	BRAZILIAN DENTAL JOURNAL	0,62	Q2	5%,10%.	20 s	IPS e.Max CAD	5% 56.6 ± 18.2, 10% 52.5 ± 2.4. El ácido HF en concentraciones de 5% y 10% promovió superficies más rugosas.	
3	YUKINORI MAURO, GORO NISHIGAWA, MASAO IRIE, KUMIKO YOSHIHARA	2017	Does acid etching morphologically and chemically affectiithium disilicate glass ceramic surfaces?	JOURNAL OFF APPLIED BIOMATERIALS AND FUNCTIONAL MATERIALS	0,46	Q3	0,05	20 S	IPS e.Max CAD		
4	AKBERTO CRUZ Y EDGAR DELGADO	2018	Alternativas de tratamientos de superficie para adhesión de cerámica de disilicato de litio	. Revista Cubana de Estomatología	0,12	Q4	0,046	20 s	IPS e.max Press o CAD		
-	BAJRAKTAROVA EILIJA, GROZDANOV ANITA, GIGOVSKI	2018	Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, part 1: Acids, Application Protocol and Etching Effectiveness	Open Access Macedonian Journal of Medical	0,29		0,096	20	IPS e.Max CAD		
5	MAAWADH AHMED, ALMOHAREB THAMER, HAMDAM RANA ET AL	2018	Repair strength and surface topography of lithium disilicate and hybrid resin ceramics with LLLT and photodynamic therapy in comparison to hydrofluoric acid	JOURNAL OFF APPLIED BIOMATERIALS AND FUNCTIONAL MATERIALS	0,29	Q3 Q3	0,096	segundos 60 segundos	IPS Emax Press		
7	Garboza CS, Berger SB, Guiraldo RD, Fugolin AP, Gonini- Júnior A, Murilo SM.	2016	Influence of Surface Treatments and Adhesive Systems on Lithium Disilicate	BRAZILIAN DENTAL JOURNAL	0,62	Q2	0,090	20s	IPS Emax Press		
8	CATINA PROCHNOW, ANDRESSA VENTURINI, LUIS GUILARDI, GABRIEL ROCHA, THIAGO LIMA, MARCO BOTTINO, CORNELIS KLEVERLAAN, LUIS VALANDRO	2018	Hydrofluoric acid concentrations: Effect on the cyclic load-to-failure of machined lithium disilicate restorations.	DENTAL MATERIALS	1,77	Q1	0,05	20 s	IPS e.Max CAD		
9	Ramp LC, Kalavacharla VK, Lawson NC, Burgess JO.	2015	Influencia del protocolo de grabado y el tratamiento con silano con un adhesivo sobre la fuerza de unión de disilicato de litio. Odontología operatoria	OPERATIVE DENTISTRY	0,97	Q1	0,05	20s	e.max CAD		
10	ZOGHEIB LUCAS, ALVARO DELLA, ESTEVAO KIMPARA, JOHN MCCABE	2011	Effect of Hydrofluoric Acid Etching Duration on the Roughness and Flexural Strength of a Lithium Disilicate-Based Glass Ceramic	BRAZILIAN DENTAL JOURNAL	0,62	Q2	0,049	20 S	IPS e.Max CAD	20s: 0,09 ± 0,05 μm	20s: 367 ± 68 MPa

N°		~ .			JCR/		Porcentaje de ácido	Tiempo De	Método de	Rugosidad	Resistencia
ART.	AUTORES	AÑO	TITULO	REVISTA	SJR	QUARTIL	fluorhídrico	grabado	procesamiento	superficial	a la flexión
	Septímio MD, Rodríguez FJ,		Surface Treatments for Improved Ceramic	INTERNATIONAL							
	Pigozzo A, Matinlinna JP,		Bonding: Lithium Disilicate Glass	JOURNAL OF ADHESION AND							
11	Marins R.	2018	Ceramic Digital Smile Design	ADHESIVES	0,92	Q1	0,05	20s	IPS e.maxCAD		
	Meereis, C. De		for Computerassisted								
	Souza, G. Albino, L. Ogliari, F. Piva,		Esthetic Rehabilitation: Two-	OPERATIVE							
12	E. Lima, G.	2016	year Follow-up Hydrofluoric acid	DENTISTRY	0,97	Q1	0,1	20S	IPS e.max		
			concentrations: Effect on thecyclic								
	Prochnow C,		load-to-failure of machined				3%-5%-10%				
	Venturini AB,		lithiumdisilicate	DDAZILIAN			// los				
	Grasel R, Gundel A, Bottino MC,		restorationsCatina Prochnowa,b,	BRAZILIAN DENTAL			cambios fueron				
13	Valandro LF. Rontani JP,	2018	Andressa Borin	JOURNAL	0,62	Q2	similares	20 s	IPS e.Max CAD		
	Sundfeld D, Costa AR, Correr		Effect of Hydrofluoric								
	AB, Puppin- Rontani RM,		Acid Concentration and Etching Time on								
14 BUSCAR	Borges GA,		Bond Strength to	ODEDATIVE							
MAS BIBLIOGRAFIA	Sinhoreti MA, Sobrinho L.	2017	Lithium Disilicate Glass Ceramic.	OPERATIVE DENTISTRY	0,97	Q1	0,05	20 S	IPS e.max Press		
			Bonding of resin composites to								
			etchable ceramic surfaces – an insight								
	Matinlinna JP,		review of the chemical aspects on	JOURNAL OF ORAL							
15	Vallittu PK.	2007	surface conditioning.	REHABILITATION	0,99	Q1	0,05	20s			
	XIAOPING LUO,		Effect of etching time and resin bond on								
	DONGGENG REN, SILIKAS		theflexural strength of IPS e.max Press	DENTAL						20s: 0,2418 ±	20s: 347 ±
16	NICK	2014	glass ceramic	MATERIALS	1,77	Q1	0,095	20s	IPS e.max Press	0.0236 μm	43 MPa
			Microshear Bond Strength of Resin								
	Lise DP, Perdigão J, Van Ende A,		Cements to Lithium Disilicate Substrates								
17	Zidan O, Lopes GC.	2015	as a Function of Surface Preparation	OPERATIVE DENTISTRY	0,97	Q1	0,048	20s	IPS e.max CAD		
			Fracture frequency of all-ceramic crowns								
	Heintze SD, Cavalleri A,		during dynamic loading in a chewing								
	Zellweger G,		simulator using	DENTAL			NO HABLA				
18	Buchler A y Zappini G	2008	different loading and luting protocols.	DENTAL MATERIALS	1,77	Q1	DE GRABADO		e.max Press		
			Fatigue failure load of an adhesively-								
	Scherer MM,		cemented lithium disilicate glass-								
	Prochnow C, Venturini AB,		ceramic: Conventional ceramic								
	Rocha GK, Lima		etching vs etch &	DENTAL							
19	TA, Rippe MP, Valandro LF	2018	prime one-step primer	DENTAL MATERIALS	1,77	Q1	0,05	20s	IPS e.Max CAD,		
	SUNDFELD DANIEL, MUNIZ										
	ALAN, PIOVESAN ANA, BOVI		The effect of hydrofluoric acid and								
	GLAUCIA, RINHO LOURENCO,		resin cement formulation on the								
	MARCONDES LUIS, PFEIFER		bond strength to lithium disilicate	BRAZILIAN ORAL							
20	CARMEM	2018	ceramic	RESEARCH	0,85	Q1	0,1	20 s	IPS e.max Press		
			Influence of particle abrasion or								
	Menees TS,		hydrofluoric acid etching on lithium	The Journal of							
21	Lawson NC, Beck PR, Burgess JO.	2014	disilicate flexural strength.	Prosthetic Dentistry	1,23	Q1	0,05	20s	IPS e.max CAD		5% 20 s: 343 MPa
	,		Ten-year survival of pressed, acid-etched		,,_0	-	5,63				
			e.max lithium								
			disilicate monolithic and bilayered								
	Malament,		complete-coverage restorations:								
	Natto ZS, Thompson V,		Performance and outcomes as a	The Journal of							
22	Rekow D, Weber HP.	2018	function of tooth position and age.	Prosthetic Dentistry	1,23	Q1	0,045	20 s	e.max Press		
44		-010	F Johnson unio ugc.	Deniestry y	2,23	4-	0,043	203	Jun 1 1033		

								Tiempo			
N°	ALITORES	4ÑO	717110	DEL/ICTA	JCR/	OLIABTII	Porcentaje de ácido	De	Método de	Rugosidad	Resistencia
ART.	ZARONE FERNANDO, DI	AÑO	TITULO Estado actual del	REVISTA	SJR	QUARTIL	fluorhídrico	grabado	procesamiento	superficial	a la flexión
	MAURO MARIA, AUSIELLO PIETRO,		disilicato de litio y zirconia: una revisión	BMC ORAL							IPS e.max Press 370-
23	RUGGIERO GENNARO	2019	narrativa Effect of etching with	HEALTH	0,87	Q1	0,05	20s	IPS e.max Press		460MPa
			distinct hydrofluoric acid concentrations on the	Journal of biomedical							
	Prochnow C, Venturini AB, Grasel R, Bottino		flexural strength of a lithium disilicate-based	materials research B. APPLIED						5%: 0,1372	5%: 308,36
24	MC & Valandro LF	2016	glass ceramic Effect of Self-Etching	BIOMATERIALS	0,67	Q2	0,05	20s	IPS e.max CAD	+-0,07 μm	± 59,1 MPa
	FIGUEREDO FABIANA, SILVA VERIDIANA,		Primer Associated to Hydrofluoric acid or								
25	WENDLINGER MICHEL ET AL	2019	Silane on Bonding to Lithium Disilicate	BRAZILIAN DENTAL JOURNAL	0,62	Q2	0,05	20s	IPS e.max CAD		
			Bond strength of lithium								
	Dos D, Bitencourt, S, Silva E, Matos A, Benez		disilicate after cleaning methods of the	Journal of Clinical							
26	G, Rangel E, Pesqueira A, Barão V, Goiato M	2020	remaining hydrofluoric acid	and Experimental Dentistry	0,48	Q2	0,05	20s	IPS e.max Press		
			Effect of hydrofluoric acid concentration on								
			the surface morphology and bonding								
	Hailan Q, Lingyan R, Rongrong N, Xiangfeng		effectiveness of lithium disilicate glass ceramics	West China journal of						9,5%: 0,38+-0,11	
27	M.	2017	to resin composites Shear bond strength of	stomatology	0,14	Q4	0,095	20s	IPS e.max CAD	um	
			porcelain laminate veneers to enamel,								
			dentine and enamel— dentine complex bonded								
28	Ozturl, E. Bolay, S. Hickel, R. Ilie, N.	2013	with different adhesive luting systems	JOURNAL OF DENTISTRY	1,5	Q1	0,05	60s	IPS e.max Press		
			Effect of Surface Treatment and Cement								
			on Fracture Load of Traditional Zirconia (3Y),								
20	Lawson N, Jurado C,	2040	Translucent Zirconia (5Y), and Lithium Disilicate	JOURNAL OF			0.05	20			
29	Huang C, et al.	2019	Crowns.	PROSTHODONTICS	0,9	Q1	0,05	20s	IPS e.max CAD		
			Comparative evaluation								
			of lithium disilicate ceramic surface and								
			bond strength to dentin surface after treatment								
	. Mallikarjuna D, Kumar		with hydrofluoric acid and acidulated	INDIAN JOURNAL						9,6%:	
30	S, Shetty S, Shetty M, Raj B.	2018	phosphate fluoride gel: An In Vitro study.	OF DENTAL RESEARCH	0,28	Q3	0,096	60s	IPS e.max	3,0250+- 0,24081	
			Comparison of lithium disilicate–reinforced								
			glass ceramic surface treatment with								
			hydrofluoric acid, Nd:YAG, and CO2 lasers								
31	SHIVA ALAVI, SOOROR SAMI, HOSSEIN SEYED	2020	on shear bond strength of metal brackets	CLINICAL ORAL INVESTIGATION	1,09	Q1	0,096	120 s	IPS e.Max CAD		
	STRAFACE ANTONIO,		HF etching of CAD/CAM								
	RUPPI LENA, GINTAUTE AISTE, FISCHER JENS,		materials: influence of HF concentration and								
32	ZITZMANN NICOLA, ROHR NADJA	2019	etching time on shear bond strength	BMC ORAL HEALTH	0,87	Q1	0,09	30 s	IPS e.max CAD	0,5 ± 0,1 μm	348MPa
J.			The Effect of Hydrofluoric Acid		,,,,		0,03			.,. = =,± paril	
			Concentration on the Bond Strength								
			Concentration on the Bond and Morphology of								
			the Surface and Strength								
	SUNDFELD DANIEL, NAVES L, COSTA A,		Interface of Glass								
33		2015	Interface of Glass Ceramics to a Resin Cement	OPERATIVE DENTISTRY	0,97	Q1	0,075	20s	IPS e.max Press		
33	NAVES L, COSTA A, CORRER A, CONSANI S,	2015	Ceramics to a Resin		0,97	Q1	0,075	20s	IPS e.max Press		
33	NAVES L, COSTA A, CORRER A, CONSANI S, BORGES G, CORRER L. SUNDFLED DANIEL,	2015	Ceramics to a Resin Cement The Effect of		0,97	Q1	0,075	20s	IPS e.max Press		
33	NAVES L, COSTA A, CORRER A, CONSANI S, BORGES G, CORRER L. SUNDFLED DANIEL, CORRER LOURENCO , PAVESI NUBIA, COATA	2015	Ceramics to a Resin Cement The Effect of Hydrofluoric Acid Concentration and Heat		0,97	Q1	0,075	20s	IPS e.max Press		
33	NAVES L, COSTA A, CORRER A, CONSANI S, BORGES G, CORRER L. SUNDFLED DANIEL, CORRER LOURENCO ,	2015	Ceramics to a Resin Cement The Effect of Hydrofluoric Acid Concentration and Heat on the Bonding to Lithium Disilicate Glass		0,97	Q1 Q2	0,075		IPS e.max Press		

								Tiempo			
N°					JCR/		Porcentaje de ácido	De	Método de	Rugosidad	Resistencia
ART.	AUTORES	AÑO	TITULO Possible	REVISTA	SJR	QUARTIL	fluorhídrico	grabado	procesamiento	superficial	a la flexión
35	OZCAN MUTLU, ALLAHBEICKARAGHI AREZO, DUNDAR MINE	2012	hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review Enhanced bonding	CLINICAL ORAL INVESTIGATION	1,09	Q1					
36	RUI LI, SHI QING MA, CHENG CHENG, WEN YI, ZI HAO LIU, YI YU FEN G, ET AL	2019	strength between lithium disilicate ceramics and resin cement by multiple surface treatments after thermal cycling	PLOS ONE	0,99	Q1	0,045	20s	IPS e.max Press		
37	SAI KHAM LYANN, TOMOHIRO TAKAGAKI, TORU NIKAIDO, MOTOHIRO UO, ET AL	2018	Effect of Hydrofluoric Acid Etching Duration on the Roughness and Flexural Strength of a Lithium Disilicate- Based Glass Ceramic	JOURNAL OF ADHESIVE DENTISTRY	0,86	Q1	0,05	20 s	IPS e.max CAD		
	RAVIKUMAR RAMAKRISHMAIAH, ABDULAZIZ ALKHERAIF, DARSHAN DEVANG,		The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of	INTERNATIONAL JOURNAL OF MOLECULAR						20s: 0,21	
38	GUARDA G, CORRER A, GONCALVES L, COSTA A, BORGES G, ET AL	2016	Dental Ceramics Effects of Surface Treatments, Thermocycling, and Cyclic Loading on the Bond Strength of a Resin Cement Bonded to a Lithium Disilicate Glass Ceramic	OPERATIVE DENTISTRY	0,97	Q1 Q1	0,05	20s	IPS e.max CAD	+- 0,030	
40	SUDRE JOAO, SALVIO LUCIANA, BAROUDI KUSAI, SALLES BRUNO, MELO CLAUDIO.	2019	INFLUENCE OF SURFACE Treatments OF LITHIUM DISILICATE ON ROUGHNESS AND BOND STRENGHT	INTERNATIONAL JOURNAL OF PROSTHODONTICS	0,74	Q2	0,1	40s	IPS e.max Press	40s: 2,05 ± 0,107 μm	
41	Yoshida, F. Tsujimoto, A. Ishii, R. Nojiri, K. Takamizawa, T. Miyazaki, M. Latta, M.	2015	Influence of surface treatment of contaminated lithium disilicate and leucite glass ceramics on surface free energy and bond strength of universal adhesives	DENTAL MATERIALS	1,77	Q1	0,045	60s	IPS e.max CAD		

DECLARACIÓN Y AUTORIZACIÓN

Yo, TORAL BENALCAZAR, JENNIFFER THALIA, con C.C: # 0916966245 autora del trabajo de titulación: Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática, previo a la obtención del título de Odontóloga en la Universidad Católica de Santiago de Guayaquil.

- 1.- Declaro tener pleno conocimiento de la obligación que tienen las instituciones de educación superior, de conformidad con el Artículo 144 de la Ley Orgánica de Educación Superior, de entregar a la SENESCYT en formato digital una copia del referido trabajo de titulación para que sea integrado al Sistema Nacional de Información de la Educación Superior del Ecuador para su difusión pública respetando los derechos de autor.
- 2.- Autorizo a la SENESCYT a tener una copia del referido trabajo de titulación, con el propósito de generar un repositorio que democratice la información, respetando las políticas de propiedad intelectual vigentes.

Guayaquil, 15 de Septiembre del 2021

f.

Toral Benalcazar, Jenniffer Thalia

C.C: 0916966245

DEL PROCESO UTE)::

Nº. DE CLASIFICACIÓN:

Nº. DE REGISTRO (en base a datos):

DIRECCIÓN URL (tesis en la web):

del Ecuador	Innovación y Sa	SECRETARÍA NACIONAL DE EDUCACIÓN SUPERIOR, CIENCIA, TECNOLOGÍA E INNOVACIÓN						
REPOSITOR	RIO NACIONAL EN CIENC	IA Y TECNOLOGÍA						
FICHA DE RE	GISTRO DE TESIS/TRABA	JO DE TITULACIÓN						
TEMA Y SUBTEMA:	Efecto del grabado con ácido fluorhídrico en cerámicas de disilicato de litio. Revisión sistemática							
AUTOR(ES)	Jenniffer Thalia, Toral Bena	lcazar						
REVISOR(ES)/TUTOR(ES)	Estefanía del Rocío, Ocamp	o Poma						
INSTITUCIÓN:	Universidad Católica de Sar	ntiago de Guayaquil						
FACULTAD:	Facultad de Ciencias Médic	as						
CARRERA:	Carrera de Odontología							
TITULO OBTENIDO:	Odontóloga							
FECHA DE PUBLICACIÓN:	15 de Septiembre del 2021	No. DE PÁGINAS: 23						
ÁREAS TEMÁTICAS:	Rehabilitación Oral							
PALABRAS CLAVES/ KEYWORDS:	Ácido fluorhídrico, disilio concentración del ácido, efe	cato de litio, tiempo de grabado, ecto, rugosidad, resistencia a la flexión.						
RESUMEN/ABSTRACT:								
Introducción: La cerámica de disilicato de litio es un material que necesita un acondicionamiento previo para crear rugosidades necesarias para colocar el cemento. El ácido fluorhídrico es considerado el Gold standard, actualmente este ácido está disponible en distintas concentraciones y es aplicado en diferentes tiempos, de esto va a depender la rugosidad y la resistencia a la flexión de la cerámica. Objetivo: Determinar el efecto del grabado con ácido fluorhídrico en diferentes concentraciones y tiempos de grabado en el aspecto superficial y la resistencia de las cerámicas de disilicato de litio. Materiales y métodos: El presente trabajo de investigación es una revisión sistemática, se encontraron 340 artículos, luego se descartaron varios artículos según los términos de inclusión y exclusión quedando un total de 41 artículos, que se utilizaron para esta investigación. Resultados: En 32 artículos concordaron que el tiempo de grabado ideal es de 20 segundos, en 19 artículos se encontró que la concentración de ácido fluorhídrico ideal es al 5%, en 22 de 39 artículos indicaron que el mejor método de procesamiento de las cerámicas es el IPS e.Max CAD, los mayores niveles de rugosidad en las cerámicas fueron las cerámicas grabadas con ácido al 9.6% por 60 segundos y las cerámicas de disilicato de litio grabadas al 5% por 20 segundos dieron el mejor resultado en la resistencia a la flexión entre 370 a 460 MPa. Conclusiones: Es necesario que las cerámicas de disilicato de litio sean grabadas con ácido fluorhídrico al 5%, por un tiempo de grabado de 20 segundos, este protocolo no va a tener un efecto negativo en la resistencia a la flexión de la cerámica.								
ADJUNTO PDF:	⊠ SI	NO						
CONTACTO CON AUTOR/ES:	Teléfono: 0991349669	E-mail: thalia-toral@hotmail.com						
CONTACTO CON LA Nombre: Dr. Pino Larrea José Fernando INSTITUCIÓN (C00RDINADOR								

Teléfono: 0995814349

E-mail: jose.pino@cu.ucsg.edu.ec

SECCIÓN PARA USO DE BIBLIOTECA