

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE EDUCACIÓN TÉCNICA PARA EL DESARROLLO CARRERA DE INGENIERÍA ELÉCTRICO-MECÁNICA

TÌTULO:

Análisis comparativo de las tecnologías de iluminación tipo Inducción y tipo Led para la eficiencia energética en la Compañía Celco en la ciudad de Quito.

AUTOR (A):

Arroyo Merchán, Andrea Paola

Trabajo de Titulación previo a la Obtención del Título de: INGENIERO ELÉCTRICO-MECÁNICO Mención en Gestión Empresarial

TUTOR:

Ing. Armando Heras Sánchez, M.S.c

Guayaquil, Ecuador 2014

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE EDUCACIÓN TÉCNICA PARA EL DESARROLLO CARRERA DE INGENIERÍA ELÉCTRICO-MECÁNICA

CERTIFICACIÓN

Certificamos que el presente trabajo fue realizado en su totalidad por **Andrea Paola Arroyo Merchán** como requerimiento parcial para la obtención del Título de **INGENIERO ELÉCTRICO-MECÁNICA**.

TUTOR

Ing. A	rmando Heras	Sánchez, M.S.
	DECAN	l O
lna	Manuel Rome	ro Paz. M.S.c

Guayaquil, a los 6 del mes de Octubre del año 2014

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE EDUCACIÓN TÉCNICA PARA EL DESARROLLO CARRERA DE INGENIERÍA ELÉCTRICO-MECÁNICA

DECLARACIÓN DE RESPONSABILIDAD

Yo, Andrea Paola Arroyo Merchán

DECLARO QUE:

El Trabajo de Titulación Análisis comparativo de las tecnologías de iluminación tipo Inducción y tipo Led para la eficiencia energética en la Compañía Celco en la ciudad de Quito previa a la obtención del Título de Ingeniero Eléctrico-mecánica, ha sido desarrollado respetando derechos intelectuales de terceros conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía. Consecuentemente este trabajo es de mi total autoría.

En virtud de esta declaración, me responsabilizo del contenido, veracidad y alcance científico del Trabajo de Titulación referido.

Guayaquil, a los 6 del mes de Octubre del año 2014

LA AUTORA

Andrea Paola Arroyo Merchán

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE EDUCACIÓN TÉCNICA PARA EL DESARROLLO CARRERA DE INGENIERÍA ELÉCTRICO-MECÁNICA

AUTORIZACIÓN

Yo, Andrea Paola Arroyo Merchán

Autorizo a la Universidad Católica de Santiago de Guayaquil, la **publicación** en la biblioteca de la institución del Trabajo de Titulación: **Análisis comparativo de las tecnologías de iluminación tipo Inducción y tipo Led para la eficiencia energética en la Compañía Celco en la ciudad de Quito**, cuyo contenido, ideas y criterios son de mi exclusiva responsabilidad y total autoría.

Guayaquil, a los 6 del mes de Octubre del año 2014

	LA AUTORA:
Andrea	Paola Arroyo Merchán

AGRADECIMIENTO

De antemano y por sobre todas las cosas agradezco a Dios por la vida, a mi madre, a mi padre y a Diana por el sacrificio y apoyo diario en mi carrera estudiantil, a mis hijos por ser la razón de cada uno de mis días y a la persona que estuvo siempre presente recordándome que a pesar de las dificultades en la vida con Fe todo es posible alcanzar.

A la empresa por permitirme realizar los estudios necesarios para este trabajo de titulación. Así mismo por facilitarme los recursos requeridos de información y hacer uso de sus datos para el desarrollo del mismo.

Al Ing. Armando Heras Sánchez, director de este trabajo por su invaluable ayuda.

DEDICATORIA

Α	Dios	nor	la	vida	v	la	salı	ıЫ
$\overline{}$	DIUS	וטע	ıa	viua	v	ıa	San	JU.

A mis hijos Sebastián y Andresito, porque para ellos es todo el fruto de mi esfuerzo.

A mis padres por la confianza en mí.

A Diana y mi familia en general por el apoyo constante y la preocupación en la culminación de mi carrera.

A mi Chino hermoso que estuvo apoyándome de principio a fin en el desarrollo de este trabajo de titulación.

Andrea Paola Arroyo Merchán

UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE EDUCACIÓN TÉCNICA PARA EL DESARROLLO CARRERA DE INGENIERÍA ELÉCTRICO-MECÁNICA

CALIFICACIÓN

Índice General

RESUMEN	
ABSTRACT	Ш
CAPÍTULO 1. INTRODUCCIÓN	1
1.1. JUSTIFICACIÓN	2
1.2. PLANTEAMIENTO DEL PROBLEMA	2
1.3. OBJETIVOS	3
1.3.1. Objetivo general	3
1.3.2. Objetivos específicos	3
1.4. TIPO DE INVESTIGACIÓN	4
1.5. HIPÓTESIS	4
CAPÍTULO 2. EVOLUCIÓN DEL CONSUMO DE ENERGÍA ELÉCTRICA EN EL ECUADOR	5
2.1 Breve reseña del CONELEC	5
2.2. CONSUMO DE ENERGÍA ELÉCTRICA EN EL ECUADOR (PERÍODO DEL 2001 AL 2012)	6
2.3. Producción de Energía eléctrica en Noviembre del 2013	9
2.4. LEGISLACIÓN ECUATORIANA REFERENTE A LA ILUMINACIÓN	11
CAPITULO 3. ILUMINACIÓN	14
3.1. DEFINICIÓN DE ILUMINACIÓN	14

3.2. CONCEPTOS BÁSICOS	14
3.2.1. POTENCIA [W]	15
3.2.2. Flujo Luminoso [φ]	15
3.2.3. Intensidad Luminosa [I]	15
3.2.4. La Iluminación o Iluminancia (E)	15
3.2.5. EFICACIA LUMINOSA	16
3.2.6. La Luminancia [L]	16
3.2.7. LA BRILLANTEZ SUBJETIVA	16
3.2.8. ABSORCIÓN Y REFLEXIÓN	17
3.2.9. MEDIDORES DE LUZ	17
3.2.10. DESLUMBRAMIENTO	17
3.2.11. NIVEL DE ILUMINACIÓN	17
3.2.12. LUMINARIA	18
3.2.13. ILUMINACIÓN COMPLEMENTARIA	18
3.2.14. ILUMINACIÓN LOCALIZADA	18
3.2.15. SISTEMA DE ILUMINACIÓN	18

3.3. TIPOS DE LUZ SEGÚN SU EMISIÓN DE FLUJO	18
3.4. SISTEMAS DE ILUMINACIÓN	20
3.4.1. ILUMINACIÓN GENERAL	21
3.4.2. ILUMINACIÓN GENERAL LOCALIZADA	22
3.4.3. ILUMINACIÓN LOCAL E ILUMINACIÓN GENERAL	22
3.5. RIESGOS POR ILUMINACIÓN INADECUADA	23
3.6. MODELOS DEL CONCEPTO DE OFICINA	24
3.7. CARACTERÍSTICAS PRINCIPALES DE LAS LUMINARIAS	26
3.7.1. RENDIMIENTO DE COLOR (IRC)	26
3.7.2. TEMPERATURA DE COLOR (K)	26
3.7.3. VIDA ÚTIL	28
3.7.4. EFICIENCIA LUMINOSA	29
CAPÍTULO 4. LÁMPARAS ELÉCTRICAS	<u>30</u>
4.1. LÁMPARA INCANDESCENTE	30
4.1.1. ELEMENTOS DE LA LÁMPARA INCANDESCENTE	31
4.1.2. FUNCIONAMIENTO DE LA LÁMPARA INCANDESCENTE	32

4.1.3. CARACTERÍSTICAS DE LA LÁMPARA INCANDESCENTE	32
4.2. LÁMPARA HALÓGENA	33
4.2.1. Elementos de la lámpara Halógena	34
4.2.2. FUNCIONAMIENTO DE LA LÁMPARA HALÓGENA	34
4.2.3. CARACTERÍSTICAS DE LA LÁMPARA HALÓGENA	36
4.3. LÁMPARA FLUORESCENTE	37
4.3.1. Elementos de la lámpara fluorescente	37
4.3.2. FUNCIONAMIENTO DE LA LÁMPARA FLUORESCENTE	39
4.3.3. Principales características de la lámpara fluorescente	40
4.4. LÁMPARA DE INDUCCIÓN ELECTROMAGNÉTICA	41
4.4.1. ELEMENTOS PRINCIPALES LA LÁMPARA DE INDUCCIÓN ELECTROMAGNÉTICA	42
4.4.2. FUNCIONAMIENTO DE LA LÁMPARA DE INDUCCIÓN ELECTROMAGNÉTICA	43
4.4.3. Principales características de la lámpara de inducción electromagnética	44
4.4. LÁMPARA LED	45
4.4.1. ELEMENTOS PRINCIPALES DE LA LÁMPARA LED	46
4.4.2. Funcionamiento de la lámpara Led	48

BIBLIOGRAFÍA	107
ANEXOS	86
RECOMENDACIONES	83
CONCLUSIONES	79
5.4.3. Propuesta #3: Reemplazo con lámparas de inducción electromagnética	73
5.4.2. PROPUESTA #2: REEMPLAZO CON TUBOS LED	68
5.4.1. PROPUESTA #1: REEMPLAZO CON LÁMPARAS PANEL DE LUZ LED	62
5.4. Propuestas para el reemplazo de las lámparas actuales	61
5.3. Análisis del consumo eléctrico	57
5.2. PLANO DE LAS INSTALACIONES CON LA CARGA ACTUAL	53
5.1. Breve reseña histórica de la empresa	51
CAPÍTULO 5. INSTALACIONES DE LA EMPRESA A REALIZAR ESTUDIO	51
4.4.3. Principales características de la lámpara Led	49

Índice de Tablas

<u>TABLA 1. CONSUMO DE ENERGIA ELECTRICA EN EL ECUADOR EN PORCENTAJE (PERIO</u>	<u> </u>
2001-2012)	
TABLA 2. CARACTERÍSTICAS PRINCIPALES DE LA LÁMPARA INCANDESCENTE	33
TABLA 3. CARACTERÍSTICAS PRINCIPALES DE LA LÁMPARA HALÓGENA	36
TABLA 4. CARACTERÍSTICAS PRINCIPALES DE LA LÁMPARA FLUORESCENTE	41
TABLA 5. CARACTERÍSTICAS PRINCIPALES DE LA LÁMPARA INDUCCIÓN	
<u>ELECTROMAGNÉTICA</u>	45
TABLA 6. CARACTERÍSTICAS PRINCIPALES DE LA LÁMPARA LED	50
TABLA 7. MODELOS DE LÁMPARAS EN INSTALACIONES DE CELCO	55
TABLA 8. CARGA ACTUAL EN LA OFICINA	56
TABLA 9. CONSUMO ELÉCTRICO MENSUAL	59
TABLA 10. VALORES PARA EL KWH EN ECUADOR	60
TABLA 11. PROPUESTA #1: MODELOS PARA REEMPLAZAR LA LUMINARIA ACTUAL	62
TABLA 12. PROPUESTA #1: CARGA [W] POR DEPARTAMENTO	64
TABLA 13. PROPUESTA #1: CONSUMO MENSUAL TOTAL [KWH]	65
TABLA 14. PROPUESTA #1: CONSUMO DE ENERGÍA Y AHORRO EN DÓLARES	66
TABLA 15. PROPUESTA #1: COSTO TOTAL PARA EL REEMPLAZO	67
TABLA 16. PROPUESTA #1: PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN	67
TABLA 17. PROPUESTA #2: MODELOS PARA REEMPLAZAR LA LUMINARIA ACTUAL	68
TABLA 18. PROPUESTA #2: CARGA [W] POR DEPARTAMENTO	70
TABLA 19. PROPUESTA #2: CONSUMO MENSUAL TOTAL [KWH]	71
TABLA 20. PROPUESTA #2: CONSUMO DE ENERGÍA Y AHORRO EN DÓLARES	72
TABLA 21. PROPUESTA #2: COSTO TOTAL PARA EL REEMPLAZO	72
TABLA 22. PROPUESTA #2: PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN	73
TABLA 23. PROPUESTA #3: MODELOS PARA REEMPLAZAR LA LUMINARIA ACTUAL	74
TABLA 24. PROPUESTA #3: CARGA [W] POR DEPARTAMENTO	75
TABLA 25. PROPUESTA #3: CONSUMO MENSUAL TOTAL [KWH]	76
TABLA 26. PROPUESTA #3: CONSUMO DE ENERGÍA Y AHORRO EN DÓLARES	77
TABLA 27. PROPUESTA #3: COSTO TOTAL PARA EL REEMPLAZO	78
ΤΑΒΙ Α 28. ΒΡΟΒΙΙΕςΤΑ #2: ΒΕΡΙΌΝΟ ΝΕ ΡΕΟΙΙΒΕΡΑΟΙΌΝ ΝΕ ΙΑ ΙΝΙΛΕΡΟΙΌΝ	79

TABLA 29. CUADRO COMPARATIVO DE LAS PROPUESTAS PARA LA ILUMINACIÓN	<u>79</u>
TABLA 30. TABLA COMPARATIVA DEL PORCENTAJE DE AHORRO CON CADA PROPUESTA	1
<u>ESTABLECIDA</u>	82

Índice de Figuras

FIGURA 1. CONSUMO DE ENERGÍA ELÉCTRICA EN EL ECUADOR (PERÍODO 2001-2012)	ϵ
FIGURA 2. CONSUMO TOTAL ANUAL DE ENERGÍA ELÉCTRICA EN EL ECUADOR (2001-2	
FIGURA 3. PRODUCCIÓN TOTAL DE ENERGÍA E IMPORTACIONES DEL S.N.I. A NOVIEM	IBRE
DEL 2013	g
FIGURA 4. CONSUMOS DE ENERGÍA PARA SERVICIO PÚBLICO A NOVIEMBRE DEL 2013	3 10
FIGURA 5. NIVELES MÍNIMOS DE ILUMINACIÓN PARA TRABAJOS ESPECÍFICOS	12
FIGURA 6. EJEMPLO DE ILUMINANCIA	15
FIGURA 7. LUMINANCIA	16
FIGURA 8. CLASIFICACIÓN POR LA EMISIÓN DE FLUJO	19
FIGURA 9. EJEMPLO DE CONFORT VISUAL	2 1
FIGURA 10. EJEMPLO DE ILUMINACIÓN GENERAL	22
FIGURA 11. EJEMPLO DE ILUMINACIÓN GENERAL LOCALIZADA	22
FIGURA 12. EJEMPLO DE ILUMINACIÓN LOCAL E ILUMINACIÓN GENERAL	23
FIGURA 13. REPRESENTACIÓN APROXIMADA DE LA TEMPERATURA SEGÚN CIERTOS	
COLORES	27
FIGURA 14. TEMPERATURA DE COLOR VS. TIPO DE ACTIVIDAD EN OFICINA	28
FIGURA 15. ELEMENTOS DEL FOCO INCANDESCENTE	31
FIGURA 16. ELEMENTOS DE LA LÁMPARA HALÓGENA	34
FIGURA 17. CICLO DEL HALÓGENO	35
FIGURA 18. PARTES DE LA LÁMPARA FLUORESCENTE	37
FIGURA 19. CEBADOR	38
FIGURA 20. BALASTO	39
FIGURA 21. ESQUEMA DEL CIRCUITO ELÉCTRICO DE UNA LÁMPARA FLUORESCENTE D	<u>)E 20</u>
WATT DE POTENCIA	39
FIGURA 22. ELEMENTOS PRINCIPALES DE LÁMPARAS INDUCCIÓN MAGNÉTICA	42
FIGURA 23. FUNCIONAMIENTO LÁMPARA INDUCCIÓN ELECTROMAGNÉTICA	43
FIGURA 24. PARTES DEL CHIP DE UN DIODO LED COMÚN	46
FIGURA 25. DISIPADOR DE CALOR	47
FIGURA 26. FUNCIONAMIENTO DEL DIODO LED	48

Índice de Ecuaciones

ECUACIÓN 1. KWH DIARIO POR ÁREA	57
ECUACIÓN 2. KWH DIARIO TOTAL POR TODAS LAS ÁREAS	58
ECUACIÓN 3. KWH TOTAL MENSUAL	58
ECUACIÓN 4. VALOR EN USD MENSUAL POR SISTEMA DE ILUMINACIÓN ACTUAL	61
ECUACIÓN 5. PROPUESTA #1: VALOR EN USD MENSUAL	66
ECUACIÓN 6. PROPUESTA #2: VALOR EN USD MENSUAL	72
ECUACIÓN 7. PROPUESTA #3: VALOR EN USD MENSUAL	77

RESUMEN

En el presente Proyecto de Titulación se lleva a cabo el desarrollo del estudio comparativo de la calidad de energía de luminarias tecnología Led y tecnología Inducción electromagnética para determinar el ahorro que se generaría haciendo el reemplazo de la mejor opción por las luminarias fluorescentes actuales que están instaladas en la empresa CELCO CIA. LTDA. de la ciudad de Quito, Ecuador.

En el Capítulo 1 se hace una pequeña introducción a los alcances del trabajo, detallando su justificación, se plantea el problema al que le daremos el enfoque, además del objetivo general y los objetivos específicos del trabajo. Por último, se plantea una hipótesis la cuál será acertada o descartada al finalizar este trabajo de titulación.

En el Capítulo 2 se explica en tema general de cómo se desarrolla y se maneja el sector eléctrico en el país. El consumo de energía en los últimos años como ha venido variando, la producción energética anual y cómo se distribuye ésta en el país, y por último se puntualiza la misión de la legislación ecuatoriana en relación a la iluminación en áreas de trabajo. Esto a la final nos ayudará a comprender la iniciativa de empezar a buscar mejores alternativas de ahorro energético para contribuir con el país.

En el Capítulo 3 se contribuye con un resumen de definiciones de conceptos en relación a la iluminación que en el proceso del estudio serán mencionados. Además se puntualizan ciertos términos y características que serán de igual

importancia para un mejor entendimiento a lo largo del trabajo de titulación y nos servirán de referencia para poder ofrecer una solución al final.

En el Capítulo 4 se detallan las características principales, elementos y principios de funcionamiento de varios tipos de lámparas que existen en mercado como la incandescente, la halógena, la fluorescente que es la más común y además de las nuevas tecnologías Led y de Inducción Magnética.

En el Capítulo 5 se presenta el desarrollo del estudio, primero detallando el consumo actual energético por departamento y siguiendo de las tres propuestas definidas para este trabajo.

En las conclusiones se detalla el cuadro comparativo de las tres propuestas con lo que la empresa posee actualmente y se verifican las ventajas y desventajas de cada propuesta realizada.

En las recomendaciones se muestran ciertos puntos que deberían ser tomados en cuenta a la hora de querer mejorar el diseño del sistema de iluminación de alguna oficina y finalmente se recomienda una de las opciones como la más factible según el ahorro económico que se generaría en el consumo eléctrico mensual.

ABSTRACT

In this Titling Project is carried out the development of the comparative study of power quality Led lighting technology and Electromagnetic induction technology to determine the savings generated by the best replacement option for existing fluorescent luminaires that are installed in the company CELCO CIA. LTDA. in the city of Quito, Ecuador.

Chapter 1 is a brief introduction to the scope of work, detailing its justification the problem to which we will focus, in addition to the general and specific objectives of the work arises. Finally, a hypothesis which will be successful or discarded at the end of this titling work arises.

In Chapter 2 it is explained in general theme of how it develops and manages the electricity sector in our country. Energy consumption in recent years has been varying, annual energy production and how it distributes in the country, and finally what does the Ecuadorian legislation is pointed in relation to the lighting in work areas. This in the end will help us understand the initiative to start looking for better alternatives for energy savings to contribute to the country.

In Chapter 3 contributes with a summary of definitions of concepts in relation to the lighting that in the process of this study will be mentioned. Also certain terms and features that will be of equal importance for a better understanding throughout the titling work and will serve as a reference for us to recommend an option as a solution at the end.

In Chapter 4 the main features, elements and principles of operation of various types of headlights available in the market such as incandescent, halogen, fluorescent is the most common and well as new technologies as Led and Electromagnetic Induction.

In Chapter 5 is the development of the study, first detailing the actual energy consumption by department and by following the three distinct proposals for this work that is presented.

In the conclusions it is detailed the comparison of the three proposals versus the luminaries that the company currently owns and the advantages and disadvantages of each proposal are checked.

In the recommendation part there are certain points that should be taken into account when trying to improve the design of the lighting system is an office and finally one of the most feasible options is recommended as the cost savings that would be generated in the monthly electricity consumption.

CAPÍTULO 1. INTRODUCCIÓN

La evolución de las diferentes tecnologías que se usan para la iluminación eléctrica empieza desde los finales de 1800, con la invención de la iluminación más antigua que data como la iluminación incandescente.

La gran importancia que tiene en estos tiempos la eficiencia y el ahorro energético como signo de sustentabilidad para las grandes, medianas y pequeñas empresas, da como resultado un tema en común que es la tecnología alternativa a generalmente usada (iluminación fluorescente o incandescente) y varias empresas proveedoras de la misma se suman en el mercado a la optimización de la energía importando estos productos y presentando su amplia variedad de aplicaciones.

Según un estudio realizado en el año 2000, el AIE (Agencia Internacional de Energía) indica que el consumo de electricidad por concepto de iluminación en el continente Europeo representa aproximadamente el 25% del total de la electricidad consumida.

La eficiencia de la iluminación fluorescente varía según el tipo de lámpara, aunque generalmente es de 5 y 8 veces mayor a las incandescentes. Actualmente, los principales campos de aplicación para la tecnología Led son de luces decorativas e iluminación para interiores. En cambio para la tecnología de Inducción magnética, sus principales aplicaciones son en campos donde se requieren de una mayor potencia como en estadios e iluminación pública.

En el siguiente trabajo se realizará un análisis de los consumos reales de KWh de la empresa CELCO CIA. LTDA. por el sistema iluminación que mantiene actualmente. Y así poder hacer comparación con los consumos que mantendría si optara por el reemplazo de la tecnología actual por una de las nuevas tecnologías.

1.1. Justificación

Este proyecto de Investigación se realiza debido a los grandes cambios y beneficios que se han generado en los países del primer mundo con respecto a la evolución energética en el área de la iluminación. Beneficios económicos, ambientales y de señal de progreso son términos que las industrias y empresas reconocidas y pudientes en el Ecuador deberían empezar a adoptar como ejemplo para la sociedad.

1.2. Planteamiento del problema

CELCO CIA. LTDA. es una mediana empresa con sucursales en Guayaquil y Cuenca, y tiene su matriz en la ciudad de Quito. La compañía a lo largo de su trayectoria en el mercado Ecuatoriano se ha preocupado por generar bienes propios entre los cuales se destaca el ser propietario de sus grandes oficinas de Quito y Guayaquil, pero a pesar de obtener un ahorro significativo mensual de lo que sería costear el alquiler de un edificio para sus amplias instalaciones y requerimientos técnicos, los dueños de la empresa no han considerado necesario aún la opción de

generar un ahorro adicional en sus pagos mensuales por medio de la adquisición de luminarias con nueva tecnología eficiente y eficaz. Esto es considerado un problema a nivel nacional ya que no es una costumbre para el ahorro energético el considerar nuevas tecnologías. Con este estudio se tratará de demostrar a CELCO el ahorro económico mensual que obtendrían mediante un cuadro comparativo en valores muy aproximados a la realidad. Y así este método de estudio poder implementarlo en otras empresas del país promocionando el reemplazo de las luminarias a los dueños de las empresas.

1.3. Objetivos

El siguiente trabajo de titulación tiene definidos los siguientes objetivos:

1.3.1. Objetivo general

Estudiar las tecnologías de iluminación tipo Inducción y tipo Led realizando un estudio de las características de las dos tecnologías para elaborar un cuadro comparativo que nos determine ahorro de consumo de energía eléctrica en la compañía CELCO de la ciudad Quito.

1.3.2. Objetivos específicos

- a) Realizar un análisis del sistema de iluminación actual de las oficinas de CELCO CIA, LTDA de la matriz Quito.
- Realizar un análisis del sistema de iluminación con tecnología tipo
 Inducción Magnética y LED

- c) Evaluar el consumo energético que actualmente posee la compañía CELCO
 CIA. LTDA. en su oficina de la matriz en Quito, de una manera global y detallado por departamento.
- d) Elaborar un cuadro de comparativo de tecnología Led y de Inducción.

1.4. Tipo de investigación

El tipo de investigación es documental y correlacional, porque se toma datos técnicos de las luminarias tipo Led y las luminarias tipo inducción para realizar el análisis comparativo entre las dos tecnologías.

1.5. Hipótesis

Al realizar el reemplazo del sistema de iluminación que poseen actualmente en la empresa CELCO CIA. LTDA. por una tecnología diferente, la compañía obtendrá mensualmente en su planilla eléctrica un ahorro del 20% del valor por concepto de iluminación.

CAPÍTULO 2. EVOLUCIÓN DEL CONSUMO DE ENERGÍA ELÉCTRICA EN EL ECUADOR

2.1 Breve reseña del CONELEC

El 10 de Octubre de 1996 se publica la Ley de Régimen del Sector Eléctrico (LRSE) en el Ecuador, la cual tiene como principal objetivo el brindar a nuestro país la confiabilidad requerida en el área del servicio eléctrico. Con esto se pretende garantizar al Ecuador su desarrollo en el ámbito social y económico dentro de los estándares de competitividad que definen el mercado de producción de electricidad en el país.

Esto quiere decir que esta ley está direccionada en proveer un servicio de calidad, vigilando cautelosamente los derechos a los consumidores, teniendo además como punto principal el compromiso de la conservación del medio ambiente.

Y así es como el 20 de noviembre de 1997 gracias al LRSE se crea el Consejo Nacional de Electricidad (CONELEC) el cual debe elaborar un Plan de Electrificación que regirá manera obligatoria para el sector público y servirá sólo de manera referencial para el sector privado del país.

Tomado directamente de la página oficial de El CONELEC, éste se constituye como un ente regulador y controlador, a través del cual el Estado Ecuatoriano puede delegar las actividades de generación, transmisión, distribución y comercialización de energía eléctrica, a empresas concesionarias.

2.2. Consumo de energía eléctrica en el Ecuador (Período del 2001 al 2012)

La figura 1 que se muestra a continuación abarca una recopilación de información varia, tomada de la página oficial del CONELEC de la sección de ESTADÍSTICA DEL SECTOR ELÉCTRICO Y MAPAS. Esta información está basada en un período 12 años desde el 2001 hasta el 2012. Información con respecto al pasado año del 2013, aún no ha sido publicada en su página oficial.

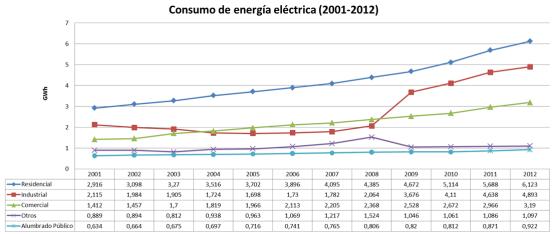


Figura 1. Consumo de energía eléctrica en el Ecuador (Período 2001-2012)

Fuente: CONELEC 2012

Ésta figura describe generalmente que en los sectores Residenciales, Industriales, Comerciales y de Alumbrado Público tras el pasar de los años, el consumo de la energía eléctrica en el país tiende a incrementarse por muchos diversos motivos. Esto a futuro requerirá la creación de más centrales Hidroeléctricas o ya sea centrales térmicas que permitan cubrir la demanda a futuro de la población Ecuatoriana. Pero así mismo cabe recalcar el impacto ambiental entre negativo y positivo que se pueda generar con la creación de estas nuevas centrales.

Tabla 1. Consumo de energía eléctrica en el Ecuador en porcentaje (Período 2001-2012)

	Residencial [%]		Comercial [%]	·	Alumbrado Público [%]
2001	36,61	26,55	17,73	11,16	7,96
2002	38,26	24,50	17,99	11,04	8,20
2003	39,11	22,78	20,33	9,71	8,07
2004	40,44	19,83	20,92	10,79	8,02
2005	40,93	18,77	21,74	10,65	7,92
2006	40,80	18,12	22,13	11,19	7,76
2007	40,69	17,71	21,91	12,09	7,60
2008	39,34	18,52	21,24	13,67	7,23
2009	36,67	28,85	19,84	8,21	6,44
2010	37,14	29,85	19,41	7,71	5,90
2011	37,30	30,42	19,45	7,12	5,71
2012	37,74	30,16	19,66	6,76	5,68

Fuente: CONELEC 2012

En la Tabla 1 se refleja que en el sector Comercial hasta el año 2008 se observa un crecimiento no muy variable como ejemplo en el año 2001 el sector comercial abarca un 17.73% del consumo de energía del total en ese año. Ya en el 2008 el sector comercial abarca un 21.24% del consumo de energía total en ese año.

Sin embargo a partir del 2009 podemos ver un 19.84% abarcado por el sector comercial, en el 2010 es el 19.41%, en el 2011 es un 19.45 y por último en el 2012 un 19.66%. Esto se debe a la campaña que inició el gobierno del actual presidente del Ecuador, el Economista Rafael Correa en el 2009 con respecto a entregar gratuitamente y distribuyéndolos por todo el país focos ahorradores a todos los ciudadanos Ecuatorianos para realizar el reemplazo por los focos incandescentes. Esta campaña fue creada como una de las estrategias para combatir los efectos de la crisis de energía eléctrica que vivía el país en esos años.

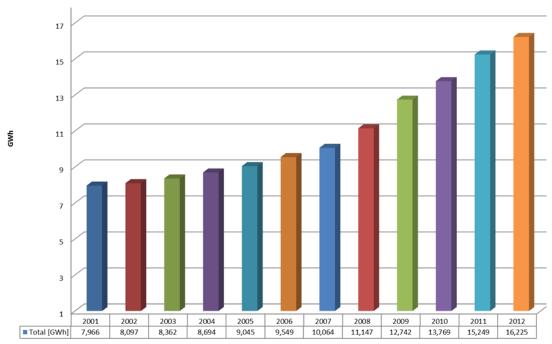


Figura 2. Consumo Total Anual de energía eléctrica en el Ecuador (2001-2012)

Fuente: CONELEC 2012

La figura 2 muestra de una mejor manera el incremento anual del consumo de energía eléctrica por el pueblo Ecuatoriano desde el año 2001 con un consumo de 7.966 GWh hasta el año 2012 con un consumo de 16.225 GWh. Es por eso que nos vemos en la necesidad de empezar a proponer un plan de electrificación y una buena gestión de la demanda de la energía que permita utilizar de manera más eficiente la energía eléctrica en el país y así aprovecharla de mejor manera. Estos tipos de planes ya son propuestas generales que han empezado en otros países Sudamericanos como por ejemplo Chile con su Programa País de Eficiencia Energética (PPEE).

2.3. Producción de Energía eléctrica en Noviembre del 2013

Según el BALANCE NACIONAL DE ENERGÍA ELÉCTRICA publicado en la página oficial del CONELEC, muestra los siguientes datos estadísticos de la Producción total de energía eléctrica e importaciones en GWh del mes de noviembre del 2013:

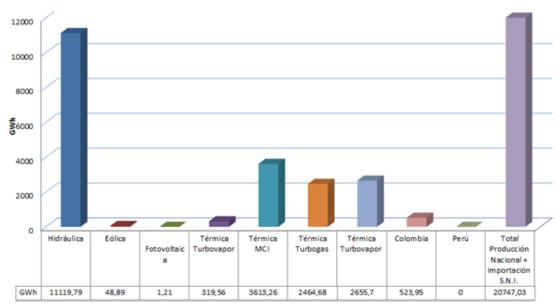


Figura 3. Producción total de Energía e importaciones del S.N.I. a Noviembre del 2013

Fuente: CONELEC 2012

La figura 3 presenta que en el Ecuador en el mes de Noviembre del año 2013, la producción total de energía eléctrica entre producción nacional de energía renovable (como la energía Hidráulica, Eólica, Fotovoltaica y térmica Turbovapor), la energía no renovable (como la energía Térmica MCI, Térmica Turbogas, Térmica Turbovapor) y la Importación de energía eléctrica por medio del Sistema Nacional Interconectado del Ecuador (Colombia y Perú) fue en la fecha descrita de 20.747,03 GWh.

Este valor de producción fue distribuido de la siguiente manera:

16000,00 14000.00 12000,00 10000,00 8000,00 6000,00 4000,00 2000,00 0.00 Residencial Industrial Comercial Alumbrado Total Perdidas de Perdidas de Total Público Consumo de Energía en Energía en Perdidas de Energía a Energía en Nivel Naciona Técnicas No Técnicas Distribución 867,62 2485,02

Consumos de Energía para Servicio Público

Gwh 5849,00 5015,00 3454,00 958,00 1698,00 16973,88 1617,40 Figura 4. Consumos de Energía para Servicio Público a Noviembre del 2013

Fuente: CONELEC 2012

La figura 4 muestra que el total de los consumos de energía eléctrica para el Servicio Público del Ecuador a Noviembre del 2013 fue de 16973.88 GWh, entre los que la mayor parte se la lleva el sector Residencial con un consumo de 5849.00 GWh, a esta le sigue casi a la par el sector Industrial con un consumo de 5015.00GWh, el sector Comercial con 3454.00 GWh, Alumbrado público con 958.00GWh y Otros Sectores el consumo fue de 1698.00 GWh.

Además las pérdidas de energía en distribución Técnica fue de 1617.40 GWh y las pérdidas No Técnicas fueron de 867.62 GWh. Dando así un total de pérdidas de energía eléctrica en Distribución de 2485.02 GWh.

A pesar de que el sector Comercial no es el mayor consumidor de la energía eléctrica en el Ecuador según todos los datos recopilados en esta sección, todo lo relacionado con respecto a la mejora de la iluminación para una mayor eficiencia

energética basándonos en las ventajas, desventajas e impacto ambiental de las nuevas luminarias propuestas, podemos también ayudar a cierta reducción del consumo energético en el sector Residencial.

2.4. Legislación Ecuatoriana referente a la iluminación

Según la Normativa Ecuatoriana del Reglamento De Seguridad Y Salud De Los Trabajadores Y Mejoramiento Del Medio Ambiente De Trabajo bajo el Decreto No. 2393 Registro Oficial No. 249 Febrero 3/98, el artículo 56. ILUMINACIÓN, NIVELES MÍNIMOS principalmente acota que:

"1. Todos los lugares de trabajo y tránsito deberán estar dotados de suficiente iluminación natural o artificial, para que el trabajador pueda efectuar sus labores con seguridad y sin daño para los ojos."(...)

La Legislación Ecuatoriana referente a la iluminación indica que los niveles mínimos de iluminación se deben calcular en base a la siguiente figura 5:

ILUMINACIÓN MÍNIMA	* Pasillos, patios y lugares de paso.			
20 luxes				
50 luxes	*Operaciones en las que la distinción no sea esencia como manejo de materias, desechos de mercancías, embalaje, servicios higiénicos.			
100 luxes	* Cuando sea necesaria una ligera distinción de detalles como: fabricación de productos de hierro y acero, taller de textiles y de industria manufacturera, salas de máquinas y calderos, ascensores.			
200 luxes	Si es esencial una distinción moderada de detalles, tales como: talleres de metal mecánica, costura, industria de conserva, imprentas.			
300 luxes	Siempre que sea esencial la distinción media de detalles, tales como: trabajos de montaje, pintura a pistola, tipografía, contabilidad, taquigrafía.			
500 luxes	Trabajos en que sea indispensable una fina distinció de detalles, bajo condiciones de contraste, tales con corrección de pruebas, fresado y torneado, dibujo.			
1000 luxes	Trabajos en que exijan una distinción extremadamente fina o bajo condiciones de contraste difíciles, tales como: trabajos con colores o artísticos, inspección delicada, montajes de precisión electrónicos, relojería.			

Figura 5. *Niveles mínimos de iluminación para trabajos específicos* Fuente: HIGIENE INDUSTRIAL Y AMBIENTE S.A.

"2. Los valores especificados se refieren a los respectivos planos de operación de las máquinas o herramientas, y habida cuenta de que los factores de deslumbramiento y uniformidad resulten aceptables."(..)

En el artículo 57. ILUMINACIÓN ARTIFICIAL, el reglamento señala como 1. NORMATIVA GENERAL que:

"En las zonas de trabajo que por su naturaleza carezcan de iluminación natural, sea ésta insuficiente, o se proyecten sombras que dificulten las operaciones, se empleará la iluminación artificial adecuada, que deberá ofrecer garantías de seguridad, no viciar la atmósfera del local ni presentar peligro de incendio o explosión.

Se deberán señalar y especificar las áreas que de conformidad con las disposiciones del presente reglamento y de otras normas que tengan relación con la energía eléctrica, puedan constituir peligro." (...)

Estas normativas y sobretodo el cuadro de iluminación mínimos para trabajos específicos serán tomados en consideración en el desarrollo de este trabajo.

CAPITULO 3. ILUMINACIÓN

3.1. Definición de Iluminación

Iluminación es la acción y efecto de iluminar. En otras palabras se lo conoce como al conjunto de luces que se instala en un determinado espacio con la intención de afectarlo a nivel visual en una manera productiva.

La iluminación se lleva a cabo a través de diversos elementos y artefactos, entre las más comunes se encuentran las lámparas de descarga de gases, lámparas incandescentes y lámparas fluorescentes. Estas últimas son especialmente utilizadas en los sectores Comerciales y Residenciales, dado que consumen menos energía que las convencionales, y se caracterizan por emitir una luz muy intensa.

Es un hecho que va ganando apogeo en el Sector de iluminación del Ecuador que varias empresas están considerando la importancia de brindar una adecuada iluminación dentro de las áreas de las oficinas, y además de esto el ahorro energético que conlleva cambiar sus luminarias por las de una tecnología más eficiente. Como por ejemplo de estas empresas tenemos al edificio Fundación Malecón 2000 y los túneles del Cerro Santa Ana en Guayaquil.

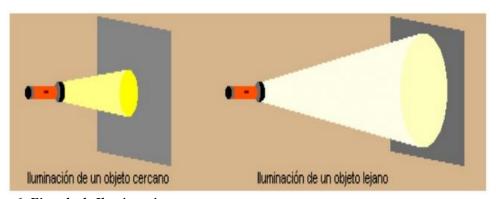
3.2. Conceptos básicos

A continuación definiremos ciertos conceptos básicos con respecto al estudio realizado en este proyecto, para así poder tener una mejor comprensión de ciertas palabras del campo de iluminación.

3.2.1. Potencia [W]

Se define como la relación de la cantidad de energía entregada por un elemento en una unidad de tiempo determinada. Su unidad es el Vatio [Watts].

3.2.2. Flujo Luminoso [φ]


Se mide por la cantidad en Lúmenes [lm] de luz que es emitida por una fuente y es percibida por el ojo humano.

3.2.3. Intensidad Luminosa [I]

Es el flujo luminoso emitido por unidad de ángulo sólido en una dirección definida. Su unidad es la Candela (Cd).

3.2.4. La Iluminación o Iluminancia (E)

Es el flujo luminoso por unidad de una superficie dada. Su unidad es el Lux (Lx). Un lux equivale a 1 $\frac{L\'umen}{m^2}$.

Figura 6. *Ejemplo de Iluminancia* Fuente: Iluminación Local

3.2.5. Eficacia luminosa

La eficacia luminosa es la relación entre el flujo luminoso (lm) y la potencia (W) de una fuente de luz en particular. Su unidad es adimensional.

3.2.6. La Luminancia [L]

Magnitud física que indica la cantidad de luz emitida por un manantial luminoso, entendida como el cociente entre la intensidad de luz emitida y la superficie aparente que la engendra. Se denomina también brillo o esplendor. Su unidad es $\frac{Candela}{m^2}$.

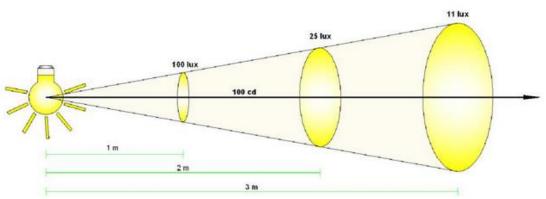


Figura 7. Luminancia

Fuente: HIGIENE INDUSTRIAL Y AMBIENTE S.A.

3.2.7. La Brillantez subjetiva

Se denomina brillantez subjetiva a la sensación luminosa percibida por el ojo humano. Cumple características como de ser reluciente y brillante.

3.2.8. Absorción y reflexión

La Absorción se denomina al proceso de disipación de un flujo luminoso.

La Reflexión se define como el cambio de dirección de un flujo incidente en una superficie. Se pueden encontrar dos tipos de reflexión: La reflexión en una superficie lisa y simétrica se denomina como Reflexión especular, esto es que los rayos se reflejan de manera paralela al rayo incidente. Y cuando la superficie es irregular se llama Reflexión difusa, puesto que los rayos no se reflejan paralelamente, por lo tanto no se ve la imagen si no una iluminación de la superficie.

3.2.9. Medidores de Luz

Son los equipos de medición que se utilizan para realizar la medición de luminancia.

3.2.10. Deslumbramiento

La gran variación entre la luminancia de un objeto y el brillo del entorno produce deslumbramiento. Este fenómeno afecta a las personas provocando principalmente fatiga visual.

3.2.11. Nivel de iluminación

Se mide en Lux. Se mide como la cantidad de energía emitida por una fuente de luz hacia un área de trabajo en donde se llevan a cabo actividades específicas.

3.2.12. Luminaria

Es la protección o recubrimiento de las lámparas que filtra y controla su emisión de luz. Incluye los elementos requeridos para la fijación, operación y conexión a los circuitos eléctricos.

3.2.13. Iluminación complementaria

Es un tipo de alumbrado que se implementa en áreas específicas donde se requiere elevar el nivel de iluminación.

3.2.14. Iluminación localizada

Es un tipo de alumbrado que se implementa en áreas específicas donde se requiere un mayor nivel de iluminación general en el plano del área de trabajo.

3.2.15. Sistema de iluminación

Conjunto de lámparas o luminarias que son destinadas a brindar un nivel de iluminación adecuada para ciertas áreas en donde se realizan actividades varias.

3.3. Tipos de luz según su emisión de flujo

Los tipos de luminarias se clasifican según el gráfico siguiente:

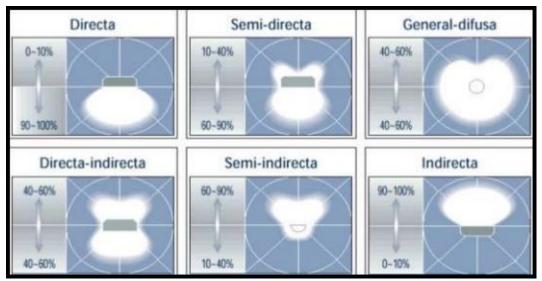


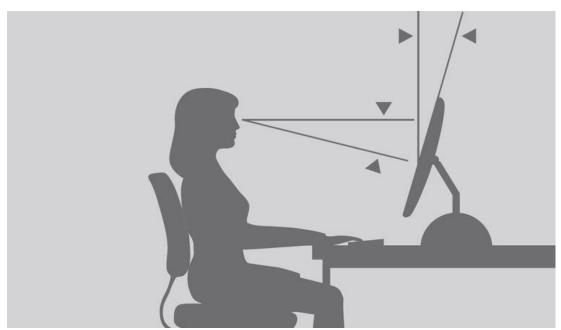
Figura 8. Clasificación por la emisión de flujo

Fuente: Non-visual biological effect of lighting and the practical meaning for lighting for work

La emisión Directa implica que solo del 90 al 100% de la capacidad del flujo luminoso de la lámpara usada irá direccionado a la superficie que se quiera iluminar, el otro valor entre el 0 y el 10% no será emitido debido a la base de la lámpara.

La emisión Semi-directa implica que solo del 60 al 90% de la capacidad del flujo luminoso de la lámpara usada irá direccionado a la superficie que se quiera iluminar, el otro valor entre el 10 y el 40% se direcciona a la parte superior de la lámpara, por la parte del techo del cuarto y no será aprovechada en la superficie que se desea iluminar.

La emisión Indirecta implica que solo del 0 al 10% de la capacidad del flujo luminoso de la lámpara usada irá direccionado a la superficie que se quiera iluminar, el otro valor entre el 90 y el 100% se direcciona a la parte superior de la lámpara, por la parte del techo del cuarto y no será aprovechada en la superficie que se desea iluminar.


Con estas características basándonos en el porcentaje de emisión de flujo luminoso de cada uno, más adelante se definirá el tipo de luz que se requiere para realizar la propuesta en este trabajo.

3.4. Sistemas de Iluminación

Es un conjunto de luminarias que se conectan entre sí para iluminar un área específica de trabajo, y dependiendo del área a iluminar, el sistema de iluminación deberá cumplir con los niveles de luz requeridos.

Al momento de diseñar un sistema de iluminación para cada área en un edificio, también hay que considerar si en esas áreas existieren funciones de trabajo en donde se llevan a cabo actividades que requieren más que una iluminación general. El fin de poseer un sistema de iluminación adecuado en las áreas de trabajo, es para generar principalmente confort visual en los empleados de las empresas.

El sistema de iluminación que será implementado en cada tipo de oficina, será creado para obtener el confort visual en el área de trabajo de cada empleado. Al estado generado por un equilibrio y una armonía de variables como estabilidad y cantidad de luz percibida se denomina Confort Visual.

Figura 9. Ejemplo de Confort Visual Fuente: iGuzzini illuminazione S.p.A.

Los diferentes sistemas de iluminación existentes son los siguientes:

3.4.1. Iluminación general

Es el que brinda un grado de iluminación uniforme en un plano horizontal de trabajo en donde se realizan tareas específicas. Para este tipo de iluminación basta con acoplar y distribuir una cantidad de lámparas en filas que mantengan una separación equitativa en una cierta área de techo.

Como su nombre mismo lo indica, se obtiene una iluminación general, proporcionando una buena visibilidad. Se aplica en lugares como aulas de escuela, en oficinas generales, galpones, bodegas, entre otros.

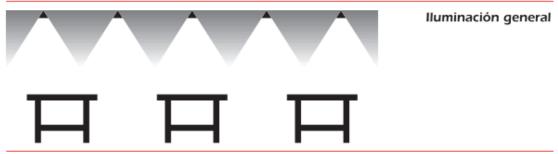


Figura 10. Ejemplo de Iluminación general

Fuente: La prevención de riesgos en los lugares de trabajo

3.4.2. Iluminación general localizada

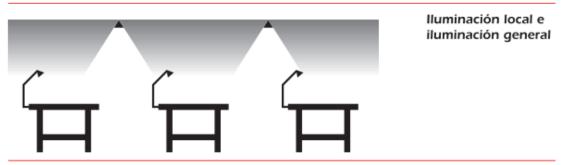

Este tipo de iluminación es usada en puestos de trabajo de mayor interés, ubicados igualmente a una altura casi similar a la del techo. Este sistema no proporciona una iluminación uniforme del área como en el anterior tipo mencionado, estaría ubicada según la distribución de los puestos de trabajo.

Figura 11. *Ejemplo de Iluminación general localizada* Fuente: La prevención de riesgos en los lugares de trabajo

3.4.3. Iluminación local e iluminación general

La iluminación local la ubicamos en lugares específicos de trabajos donde se requiere un alto grado de visibilidad por la característica misma del trabajo a realizar. Adicional, este tipo de iluminación va acompañada del arreglo de iluminación general.

Figura 12. *Ejemplo de Iluminación local e iluminación general* Fuente: La prevención de riesgos en los lugares de trabajo

3.5. Riesgos por iluminación inadecuada

El trabajo con poca luz daña la vista y un ambiente que posee la iluminación adecuada no se define por tener cierta cantidad de luz. Si el lugar de trabajo de un colaborador posee una iluminación inadecuada podría ocasionarle los siguientes síntomas:

- ❖ Fatiga visual: Trabajar en un área de oficina donde los deslumbramientos visuales son constantes en el día a día produce con el paso del tiempo en el personal dolores de cabeza, insatisfacción, alteraciones del ánimo, molestias oculares, pesadez en los ojos, picores, necesidad de frotarse los ojos, somnolencia.
- Síntomas extra oculares: cefaleas, ansiedad, cansancio general, vértigos, pueden presentarse cegueras temporales debido a los cambios bruscos en lugares con diferentes grados de iluminación.
- * Trastornos visuales: borrosidad, disminución de la capacidad visual
- Fatiga mental.

- Como una consecuencia a largo plazo, pueda llegar a presentarse una reducción en la capacidad visual de las personas que pasan su mayor parte del día en zonas que carecen de una iluminación uniforme.
- Existen normas de seguridad industrial en donde la prevención de riesgos por accidentes en el trabajo, puede ser reducido con la correcta iluminación en las áreas de trabajo que así lo necesiten.

Este último quiere decir que en algunas ocasiones, los accidentes se dan por una mala iluminación del área en donde ocurrió el mismo. La mala iluminación influye en que no se pudo apreciar el riesgo del accidente por la incapacidad visual de percibirlo e incluso de cómo actuar al momento del accidente en el área lo cual pudiera empeorarlo. Estos accidentes pueden llegar a ser desde leves o hasta graves.

3.6. Modelos del concepto de oficina

La estructura, organización y forma en que se amueblen que se adopte para los distintos departamentos que conformen una empresa dependen mucho de la misión, visión y objetivos de la misma.

Un estudio realizado por el Building Research Establishment determinó la constancia de cinco tipos departamentales basadas en las funciones que realizaban sus empleados en ellas y que fueron comunes en varias empresas como son las siguientes:

- a) Función tipo Colmena: el gran personal que encierra esta función no posee comunicación esencial entre ellos. Sus labores están regidas por responsabilidades limitadas y cumplen tareas individuales. Como ejemplo este rol los cumplirían personal de un Call Center del área de ventas.
- b) Función tipo Celular: también se caracteriza por lo que el colaborador cumple tareas individuales, pero estas requieren de un mayor nivel de concentración para su realización.
- c) Función tipo Reunión: Aquí, la comunicación entre los colaboradores y su autonomía de trabajo son de carácter variable y temporal. Como ejemplo de este tipo de función son las salas de reuniones, salas de videoconferencias.
- d) Función tipo Club: Este tipo de funciones se diferencia del tipo Reunión debido a que los colaboradores requieren interactuar entre sí. Debe fluir la comunicación y su concentración es alta también. Estas funciones se las realiza por tiempos determinados ya que son basados por proyectos de trabajo en donde el rendimiento del departamento es primordial.
- e) Función tipo Lobby: La comunicación y autonomía de los colaboradores es escasa. Es más bien considerado un área de descanso y vía de comunicación entre las diferentes áreas de la empresa. Como ejemplo tenemos el área de recepción y espera, escaleras y pasillos.

3.7. Características principales de las luminarias

Por medio de las siguientes características que se detallan a continuación, son consideradas las principales a la hora de obtener un criterio a la hora de comparar sobre el rendimiento de las de luminarias.

3.7.1. Rendimiento de color (IRC)

Es la capacidad que tiene una fuente de luz artificial en reproducir los colores.

Como referencia tenemos el IRC=100 el cual es del sol. A continuación se explican los demás valores de IRC:

- a) 81<IRC<100: Una fuente de luz artificial con un IRC entre estos valores tiene la capacidad de reproducir de manera eficiente los diferentes tonos de colores. Estos valores de IRC son requeridos en áreas de trabajo donde el tono de los colores son de mucha importancia.
- b) 61<IRC<80: La reproducción de colores entre estos valores de IRC es buena. En ocasiones los colores podrían llegar a verse ligeramente distorsionados. Son usados en áreas donde la permanencia de personas no es normal y el área de trabajo así no lo requiera.
- c) IRC<60: La reproducción de colores no es una prioridad.

3.7.2. Temperatura de Color (K)

Temperatura de color se define para el valor necesario para poder alterar el color blanco y llevarlo más hacia el color azul o más hacia el color rojo bajo la dominancia de algunos colores del espectro lumínico. Este valor es usado para realizar la selección de las fuentes de luz ya sea para iluminación general, tipo

doméstico, ambiental o en oficinas. Se toma como referencia en 5.500K la luz del día que debería ser la perfecta.

- ❖ Se usan lámparas en alrededor de los 2.800K cuando se quiere generar un ambiente confortable y cálido como en habitaciones, restaurantes, hoteles, entre otros.
- Mientras que en tiendas comerciales, oficinas, entre otros, se busca lámparas alrededor de los 4.000K.
- Para zonas de trabajo visual intenso como talleres eléctricos, cocinas, entre otros, se usan lámparas alrededor de los 5.600K.

Figura 13. Representación aproximada de la temperatura según ciertos colores Fuente: XATAKAFOTO, Curso de fotografía 29 "El balance de blancos".

La luz cálida tiene una temperatura de color baja, este es el caso del atardecer, que tiene alrededor de unos 3.500K. La luz fría tiene una temperatura de color más alta como las noches con cielo azulado tienen alrededor de 9.500K. Por tanto, cuanto

más cálida sea la luz (amarillo-rojo) más baja será la temperatura de color y cuanto más fría (azul), más alta la temperatura de color.

Para áreas en oficinas se toma de referencia los datos de la figura 14:

Tono de luz. Temperatura de color	Tipo de actividad o de iluminación
Tonos cálidos. < 3000 K.	Entornos decorados con tonos claros Áreas de descanso. Salas de espera. Oficinas tipo Reunión. Oficinas tipo Celda. Zonas con usuarios de avanzada edad. Áreas de esparcimiento. Bajos niveles de iluminación.
Tonos neutros. 3300 - 5000 K.	Lugares con importante aportación de luz natural Tareas visuales de requisitos medios. Oficinas tipo Colmena. Oficinas tipo Celda.
Tonos frios. > 5000 K.	Entornos decorados con tonos fríos. Altos niveles de iluminación. Para enfatizar la impresión técnica. Tareas visuales de alta concentración.

Figura 14. *Temperatura de color vs. Tipo de actividad en oficina* Fuente: Guía Técnica de Eficiencia Energética en Iluminación. Oficinas

3.7.3. Vida útil

Se define mediante el tiempo en el que una fuente de luz trabaja normalmente sin haber empezado a perder su rendimiento lumínico. La vida útil es medida en horas de funcionamiento.

3.7.4. Eficiencia luminosa

Se define como la cantidad de luz emitida (lm) por unidad de potencia eléctrica consumida (W). Como por ejemplo, la eficacia máxima posible de una lámpara cualquiera es de 683 lm/W y corresponde a una eficiencia del 100%.

CAPÍTULO 4. LÁMPARAS ELÉCTRICAS

Una lámpara eléctrica o bombilla es en definición un convertidor de energía eléctrica en luz visible. El 21 de octubre de 1879 el estadounidense empresario e inventor Thomas Alva Edison presentó el invento de la primera lámpara eléctrica incandescente y patentó su invento.

La necesidad de generar y distribuir la energía eléctrica por diferentes ciudades y a grandes distancias, fue el punto primordial que disparó el crecimiento en el mercado de la lámpara eléctrica. A finales del año 1945, tiempo después de que finalizó la segunda Guerra Mundial, la lámpara fluorescente era que la predominaba en el mercado y con el pasar de los años ésta iba mejorando su diseño y eficiencia sin perder su calidad de luz.

Actualmente en el mercado existe una gran variedad de lámparas, con diferentes características, principio de funcionamiento y aplicaciones como las que se detallarán a continuación de este capítulo.

4.1. Lámpara Incandescente

Con el método de generación de la luz de esta lámpara, el rendimiento es bajo porque solamente el 15% de la energía se convierte en luz, el 85% restante se pierde en manera de calor.

La intensidad de un foco incandescente es regulable sin límites y tienen una vida útil de 1.000 horas. Esto quiere decir que con una estimación de trabajo de 3 horas diarias, el funcionamiento normal del foco será de hasta un año.

4.1.1. Elementos de la lámpara incandescente

En la figura 15 a continuación podemos observar de una manera general los elementos de un foco incandescente. La parte externa está conformada por un casquillo metálico de rosca, un pequeño aislante y el borne donde se conecta el polo positivo y en el casquillo el polo negativo de la fuente eléctrica.

En su parte interna encontramos dos alambres del conductor (cobre) y en sus extremos está soldado el filamento de tungsteno. Esto va cubierto de una ampolla de cristal en el cual tiene en su interior además contiene un gas inerte Argón con la finalidad de alargar la vida del filamento y evitar el ennegrecimiento del cristal. Finalmente la bombilla es sellada al vacío.

ampolla filamento

Figura 15. Elementos del foco incandescente

Fuente: Iluminet

Las bombillas incandescentes varían su tamaño dependiendo de la potencia de la misma. Mientras mayor sea la potencia de la bombilla se genera un mayor desprendimiento de calor, por lo tanto se requiere una mayor área de enfriamiento.

4.1.2. Funcionamiento de la lámpara incandescente

Cuando empieza a fluir la corriente eléctrica por el filamento de Tungsteno, éste se calienta por la excitación de sus átomos, más conocido con el efecto Joule, y al momento de alcanzar temperaturas muy elevadas emite luz visible y también calor.

4.1.3. Características de la lámpara incandescente

De manera global, una lámpara incandescente es la que menor eficacia luminosa con 15 (lm/w). Las de tipo convencional de 100W registran una temperatura de color alrededor de los 2.500K que se asemeja a los colores cálidos. Su IRC es muy cercano al valor 100. Registra una vida útil de aproximadamente 1.000 horas. Su costo es muy bajo. Entre sus aplicaciones se recomienda este tipo de lámparas para interiores, en iluminación localizada y de tipo decorativo. En resumen se detallan las siguientes características principales de la lámpara en mención:

Tabla 2. Características principales de la lámpara incandescente

Tipo de lámpara	INCANDESCENTE tipo
	convencional
Potencia (W)	100
Temperatura de Color	Alrededor de los 2.500K (colores cálidos)
Eficiencia Luminosa (lm/W)	15
IRC	Cercano al 100
Vida útil (horas)	1.000
Tiempo de encendido	0
(min)	
Costo	Bajo
Aplicaciones	Se recomienda usar este tipo de luz en interiores, en iluminación localizada y de tipo decorativo

Fuente: BEAULA RENOVABLES SL.

4.2. Lámpara Halógena

La necesidad de aumentar la intensidad de luz emitida por una lámpara incandescente requería aumentar en gran cantidad la temperatura del filamento de tungsteno lo cual ennegrecía rápidamente la bombilla de cristal y disminuía su vida útil.

4.2.1. Elementos de la lámpara Halógena

A partir de esa necesidad y nueve años después de su invención, se realizó la variación de reemplazar el gas inerte Argón por un gas halógeno en pequeña cantidad (ya sea el Iodo o el Bromo) y modificar la bombilla por el cristal cuarzo. De ahí su similitud en las demás partes se mantiene igual a las incandescentes como podemos ver en la siguiente figura 16:

Figura 16. Elementos de la lámpara halógena

Fuente: OSRAM

4.2.2. Funcionamiento de la lámpara Halógena

El principio es el mismo que el de una lámpara incandescente, producir luz visible debido a la excitación de los átomos del filamento de tungsteno debido al paso de la corriente eléctrica. El proceso del Halógeno se presenta de manera ininterrumpida en movimiento mientras la lámpara se encuentra encendida.

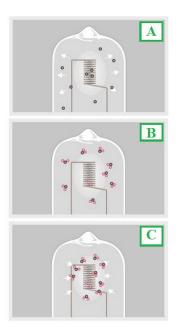


Figura 17. Ciclo del Halógeno

Fuente: OSRAM

Como podemos observar en la figura 17 el recuadro A, nos muestra la excitación de los átomos que al alcanzar su máxima temperatura que es alrededor de los 1.400°C se da inicio a la evaporación del filamento de Tungsteno. Los átomos se gasifican y se expanden hacia el cristal de cuarzo.

En el recuadro B, ya cuando la temperatura del gas se encuentra a unos 800°C los átomos del tungsteno reaccionan con el gas halógeno y se forma el gas halogenuro de tungsteno. Este gas retorna al centro del interior de la bombilla.

En el recuadro C, el gas de halogenuro de tungsteno debido a la elevada temperatura en el centro, se vuelve a descomponer en tungsteno metálico y se acopla en filamento reconstruyéndolo.

4.2.3. Características de la lámpara Halógena

Una lámpara halógena del tipo reflectora de 100W registra una temperatura de color alrededor de los 3.000K que se asemeja a los colores cálidos pero con una tonalidad más blanca. Su eficacia luminosa es de 75 (lm/w). Su IRC también llega casi al valor de 100. Registra una vida útil de aproximadamente entre 6.000 y 20.000 horas. Su costo es muy medio – bajo dependiendo del tipo. Entre sus aplicaciones se recomienda este tipo de lámparas para iluminación del hogar, tiendas, oficinas, también es usado en los faros delanteros de los automóviles. En resumen se detallan las siguientes características principales de la lámpara en mención:

Tabla 3. Características principales de la lámpara halógena

Tipo de lámpara	HALÓGENA tipo reflectora
Potencia (W)	100
	Alrededor de los 3.000K
Temperatura de Color	(color cálido un poco más
	blanco)
Eficiencia Luminosa	75
(lm/W)	13
IRC	Cercano al 100
Vida útil (horas)	Entre 6.000 y 20.000
Tiempo de encendido	1-5
(min)	
Costo	Medio - Bajo
Aplicaciones	Generalmente en iluminación del hogar, tiendas comerciales, recepciones, faros delanteros de los automóviles.

Fuente: BEAULA RENOVABLES SL.

4.3. Lámpara Fluorescente

Los primeros experimentos y pruebas que se registran con la iluminación fluorescente datan en el año de 1707, pero estos realmente no convencían ya que la radiación ultravioleta que emitían era demasiado elevada.

Aproximadamente dos décadas después, los científicos Germer, Meyer y Spanner patentaron la idea de la primera lámpara fluorescente y se la vendieron a la empresa norteamericana General Electric. Ellos incrementaron la presión dentro del tubo con gas Argón y lo recubrieron con polvo fluorescente para que absorba la radiación ultravioleta que antes emitía en elevadas cantidades.

Esta lámpara fue ganando aceptación comercialmente y se ha mantenido inalterable en su principio de funcionamiento por el fenómeno de fluorescencia, la cual emite una luz más blanca que las lámparas de épocas anteriores.

4.3.1. Elementos de la lámpara fluorescente

Los elementos principales de una lámpara fluorescente son:

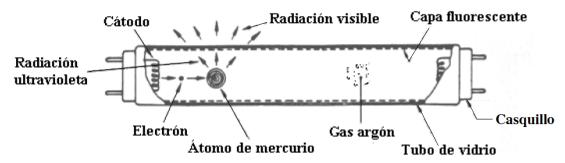


Figura 18. Partes de la lámpara fluorescente

Fuente: Lámparas y sus componentes

- a) Tubo de vidrio: Según la potencia de la lámpara es la variación de su
 - diámetro y su longitud. El tubo en su parte interna está recubierto de polvo
 - fluorescente y es llenado a baja presión con gas Argón (Ar). En sus
 - extremos están los cátodos de Wolframio que emiten los electrones.
- b) Casquillos: Generalmente es de metal y es la que encaja con el
 - portalámparas. Se encarga de permitir el paso de la corriente a la lámpara
 - una vez conectada.
- c) Cebador: Es el encargado de generar el encendido de la lámpara mediante
 - el pico de alta tensión provocado por la apertura de los electrodos por el
 - calentamiento que le genera el cebador.

Figura 19. *Cebador* Fuente: Iluminet

d) Balasto eléctrico: Es un dispositivo que sirve para limitar el paso de la

corriente eléctrica hacia la lámpara, y que produce un arco eléctrico de

aproximadamente 120 hertz, lo necesario para mantener un flujo constante

de luz y contribuir en su normal funcionamiento. Existen del tipo

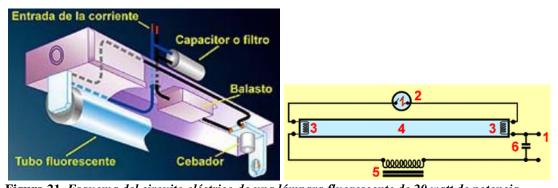

eléctrico, electrónico o magnético.

Figura 20. *Balasto* Fuente: Daisalux

4.3.2. Funcionamiento de la lámpara fluorescente

El funcionamiento de una lámpara fluorescente se resume en los siguientes pasos:

Figura 21. Esquema del circuito eléctrico de una lámpara fluorescente de 20 watt de potencia Fuente: ASIFUNCIONA S.L.

 La entrada de la corriente alterna a la lámpara pasa por los cátodos de Wolframio en donde se produce la excitación de los electrones que empiezan a fluir por todo el circuito.

- 2. Al llegar éstos al *cebador* en conjunto con el gas Neón se produce el arco que enciende el gas. El calor generado por este hace que las placas metálicas del cebador se curven cerrando el contacto eléctrico entre los dos electrodos.
- 3. Éste será el camino de la corriente eléctrica requerido para el encendido de los *filamentos de tungsteno* al mismo tiempo que se apaga el gas.
- 4. Los filamentos empiezan a emitir el flujo de electrones y además con el calentamiento ionizan el gas Argón dentro del tubo de descarga de luz. Se produce todo una serie de procesos químicos que termina con la liberación de fotones de luz ultravioleta que se chocan con la capa de polvo fluorescente (Fósforo, P) así convirtiéndose en una luz visible fluorescente blanca.
- 5. El *balasto* sirve para limitar el paso de la corriente eléctrica hacia la lámpara, y que producen un arco de electricidad para mantener un flujo constante de luz y contribuir en su normal funcionamiento.
- 6. El *capacitor* mejora el factor de potencia de la lámpara para que ésta sea eficiente.

4.3.3. Principales características de la lámpara fluorescente

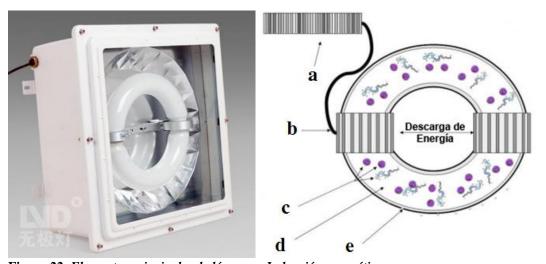
Una lámpara fluorescente del tipo tubo T8 registra una temperatura de color entre los 3.000 y 4.100K dependiendo del valor nos estamos refiriendo a una luz cálida o luz fría. Su eficacia luminosa está entre los 70 y 80 (lm/w). Su IRC cercano al 85, este tipo de luz tiene la propiedad de variar los tonos originales de los objetos. Registra una vida útil de aproximadamente 10.000 y 20.000 horas y por eso es considerada uno de los tipos de lámparas más comerciales. Su costo es muy medio – elevado, dependiendo de la cantidad de tubos, potencia y temperatura de color de las mismas. Entre sus aplicaciones s comúnmente usada en la iluminación doméstica y en el sector industrial, en iluminación de oficinas. En resumen se detallan las siguientes características principales de la lámpara en mención:

Tabla 4. Características principales de la lámpara fluorescente

Tipo de lámpara	FLUORESCENTE tipo tubo T8
Potencia (W)	17-59
Temperatura de Color	Entre 3.000 y 4.100 (luz cálida, luz fría)
Eficiencia Luminosa (lm/W)	entre 70 y 80
IRC	Cercano al 85
Vida útil (horas)	entre 10.000 y 20.000
Tiempo de encendido (min)	0-1
Costo	Medio - Elevado
Aplicaciones	Es comúnmente usada en la iluminación doméstica y en el sector industrial, en iluminación de oficinas.

Fuente: BEAULA RENOVABLES SL.

4.4. Lámpara de Inducción Electromagnética


Se le atribuye el descubrimiento del fenómeno de la inducción electromagnética al físico y químico inglés Michael Faraday en el año de 1831. Estas lámparas de Inducción electromagnética pasaron a ser una evolución de las lámparas fluorescentes puesto que son muy similares en su principio de funcionamiento, el uso de gases para producir luz visible blanca.

La diferencia es el proceso que tiene cada lámpara para unir los gases en su interior. Las lámparas de inducción no usan electrodos para inducir la corriente eléctrica en el interior del tubo y unir los gases como lo hacen las fluorescentes, si no

que éstas transmiten energía eléctrica por un campo magnético inducido que se produce en la lámpara obteniendo el término de Inducción Magnética. Este proceso contribuye en que la vida útil de la lámpara sea mayor convirtiéndola en una tecnología eficiente.

4.4.1. Elementos principales la lámpara de inducción electromagnética

Los elementos principales de la lámpara de inducción electromagnética son:

Figura 22. Elementos principales de lámparas Inducción magnética Fuente: Catálogo de información de Shanghai Hongyuan Lighting & Electric Co., Ltd

- a) Generador de Alta Frecuencia
- Bobina de Inducción sin Electrodos (La bobina además tiene en su estructura el soporte de la antena, un cable coaxial y unos anillos magnéticos que son termoconductores)
- c) Electrones, Ion Plasma y Gas Inerte
- d) Capa de Trifósforo
- e) Luz Visible

4.4.2. Funcionamiento de la lámpara de inducción electromagnética

A continuación se explica el funcionamiento de la lámpara de inducción:

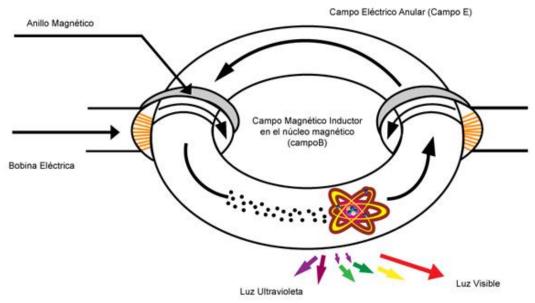


Figura 23. Funcionamiento lámpara inducción electromagnética

Fuente: EFIEX S.A.

- a) El *generador de alta frecuencia* produce una corriente alterna a 236[Kh] la cual es la frecuencia adecuada para la emisión electromagnética que es suministrada a la antena (bobina eléctrica primaria de inducción y un núcleo de ferrita).
- b) La bobina de inducción sin electrodos descarga la energía absorbida hacia el tubo de cristal. Así en conjunto con la otra bobina se produce el Campo Magnético Inductor en el núcleo magnético de la bombilla.
- c) Se produce el choque entre el gas inerte Argón (Ar) y los electrones de las moléculas de mercurio, produciendo alrededor del 0,4% de luz ultravioleta y un 0.2% de rayos infrarrojos.

d) Gracias a la *capa de Trifósforo* es que la luz ultravioleta se convierte en *luz visible* (cerca del 0.4%).

4.4.3. Principales características de la lámpara de inducción electromagnética

Una lámpara de inducción electromagnética del tipo compacta registra una temperatura de color alrededor de los 5.000K. Su eficacia luminosa está entre los 80 (lm/w). Su IRC es mayor al 80. Registra una vida útil entre 60.000 y 100.000 horas. Su costo es elevado pero se justifica por su larga vida útil. Entre sus aplicaciones son útiles en sitios donde reemplazar la lámpara implique un costo elevado. En exteriores y lugares difíciles de acceder tales como túneles, aeropuertos, edificios públicos, galpones, industrias. En resumen se detallan las siguientes características principales de la lámpara en mención:

Tabla 5. Características principales de la lámpara inducción electromagnética

Tipo de lámpara	INDUCCIÓN tipo compacta
Potencia (W)	40-300
Temperatura de Color	5.000
Eficiencia Luminosa (lm/W)	80
IRC	Mayor a 80
Vida útil (horas)	entre 60.000 y 100.000
Tiempo de encendido (min)	Inmediato
Costo	Elevado
Aplicaciones	Son útiles en sitios donde reemplazar la lámpara implique un costo elevado. En exteriores y lugares difíciles de acceder tales como túneles, aeropuertos, edificios públicos, galpones, industrias.

Fuente: BEAULA RENOVABLES SL.

4.4. Lámpara LED

La evolución de la tecnología que encamina al desarrollo de las lámparas Led se da inicio en el año de 1907 cuando el inglés Henry Joseph Round descubre que los materiales inorgánicos pueden iluminarse si se les aplica una corriente eléctrica. Por los años 1950 tras la invención de un transistor fue posible explicar la emisión de luz. Pero es realmente en 1962 cuando el estadounidense Nick Holonyak desarrolla el primer diodo luminiscente rojo. Actualmente existen también Leds en colores verde, naranja, amarillo, azul brillante, blanco. En el 2006 se producen los primeros diodos emisores de luz con 100 Lm/W, eficacia que puede ser superada y alcanza por las

lámparas de inducción. La evolución de esta tecnología ha alcanzado desarrollar Leds que alcancen una eficacia luminosa de 250 Lm/W.

4.4.1. Elementos principales de la lámpara Led

Una lámpara de Led está compuesta por múltiples agrupaciones de Leds (Light-Emitting Diode, Diodos Emisores de Luz) como su fuente de luz. Su cantidad depende de la intensidad luminosa que se requiera designar. Los elementos principales de la lámpara Led son:

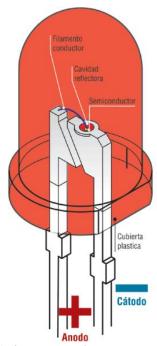


Figura 24. Partes del Chip de un diodo LED común

Fuente: Innobien

a) Chip de un diodo LED común: las partes que componen un Led son un filamento conductor (Oro) que enlaza el cátodo (terminal negativo externo corto) y el ánodo (terminal positivo externo) para la conexión externa, su cavidad reflectora, el

semiconductor emisor de luz, la cubierta plástica que suele ser transparente o del

mismo color de la luz que emite el Led.

b) Controlador electrónico o driver: este elemento tiene como función

permitir que las lámparas LED de alta potencia luminosa puedan trabajar con

corriente alterna (C.A.) de la red eléctrica doméstica, en lugar de corriente directa

(C.D.).

c) Disipador de calor: una lámpara LED de alta potencia luminosa cuando se

encuentra funcionando, genera cierto calor en la unión del diodo Led, y el disipador

de calor es el encargado de disipar este calor y ayuda a mantener la lámpara en un

rango de temperatura adecuado para el funcionamiento.

Figura 25. Disipador de calor

Fuente: ASIFUNCIONA S.L.

d) Componentes ópticos apropiados: un Led emite la luz de forma

unidireccional. Una lámpara Led de alta potencia luminosa tiene entre sus

componentes ópticos pequeños lentes para la difusión de la luz que emite, pero para

poder abarcar un ángulo mucho más amplio de iluminación (entre 90° y 140°)

deberán tener adicionalmente sistemas de reflexión y lentes mucho más complejas.

4.4.2. Funcionamiento de la lámpara Led

A continuación se explica el funcionamiento de un chip Diodo Led:

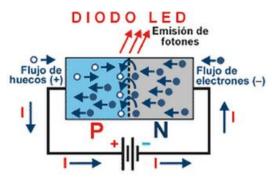


Figura 26. Funcionamiento del diodo LED

Fuente: ASIFUNCIONA S.L.

Un diodo Led funciona con corriente C.D., por eso una lámpara de alta potencia debe incluir en su circuito interno un convertidor de voltaje desde C.A. a C.D. para poder operar con el voltaje de la empresa eléctrica. Al ser polarizado directamente el diodo Led con el paso de la corriente eléctrica, los electrones fluyen del polo N (cátodo) al polo P (ánodo). El paso de los electrones por la barrera potencial o el punto de unión entre los dos polos de diodo provocan la emisión de un fotón de luz. El color de la luz emitida por el diodo ya depende de la composición química del chip y de los materiales por los que esté compuesto el diodo. Por ejemplo, para que un diodo emita luz roja su composición química debe ser de Arseniuro de Galio y Aluminio (GaAlAs), para que la luz sea de color azul su composición química debe ser de Nitruro de Galio (GaN).

En la actualidad existen dos métodos para el uso de Leds en la iluminación:

- a) Led RGB: Este método consiste en el uso de varios chips de colores rojo, verde y azul (Red, Green and White) los cuales cada uno emite una longitud de onda diferente para así formar el espectro de luz blanca. Esta opción tiene como ventaja la afinación de la intensidad de cada led para obtener un carácter de luz emitido requerido. Su gran desventaja es su elevado costo de producción.
- b) Led de fósforo convertido (pcLED): Este método es parecido al de una lámpara fluorescente que emite luz blanca por medio de rayos UV en combinación con el fósforo. Consiste en el uso de un Led Azul o Ultravioleta que tienen como característica una corta longitud de onda y que al combinarse con el fósforo, éste absorbe cierta parte de la luz azul y la emite en un espectro más amplio de luz blanca. El mecanismo es similar a la forma de una lámpara fluorescente que emite luz blanca de un sistema de iluminación UV de fósforo. Su mayor ventaja es el bajo costo de producción. Su principal desventaja es que el proceso de combinación con el fósforo reduce la eficiencia de la lámpara. Actualmente éste es el método mayormente utilizado para la iluminación general con Leds.

4.4.3. Principales características de la lámpara Led

Una lámpara Led del tipo panel de luz registra una temperatura de color entre los 2.700K y 6.500K siendo una luz blanca. Su eficacia luminosa es mayor a los 80(lm/w). Su IRC es mayor al 80. Registra una vida útil entre 50.000 y 100.000 horas. Su costo es elevado pero se justifica por su larga vida útil. Entre sus aplicaciones se encuentra el área de señalización, para iluminación en oficina y áreas con fines decorativos. En resumen se detallan las siguientes características principales de la lámpara en mención:

Tabla 6. Características principales de la lámpara Led

I	
Tipo de lámpara	LED tipo panel de luz
Potencia (W)	36
Temperatura de Color	entre 2.700 y 6.500 (luz blanca)
Eficiencia Luminosa (lm/W)	mayor a 80
IRC	Mayor a 80
Vida útil (horas)	entre las 50.000 y 100.000
Tiempo de encendido (min)	Inmediato
Costo	Elevado
Aplicaciones	Señalización, iluminación en oficinas, áreas con fines decorativas

Fuente: BEAULA RENOVABLES SL.

CAPÍTULO 5. INSTALACIONES DE LA EMPRESA A REALIZAR ESTUDIO

5.1. Breve reseña histórica de la empresa

CELCO CIA. LTDA. nace el 12 de Junio de 1978, para proveer de protección eléctrica total requerida por equipos computacionales, industriales, eléctricos y electrónicos de nuestro país. Esos 36 años han servido para brindar confianza a sus clientes los cuales adquieren productos de alta tecnología respaldada de las mejores marcas en el mercado, reciben asesoramiento en sus proyectos eléctricos antes de las venta, durante la venta y como servicio postventa. Además cuenta con personal técnico que han sido entrenados en fábrica y que llevan muchos años trabajando en la empresa para lo cual han adquirido los conocimientos necesarios en campo para casos de mantenimientos correctivos de emergencia, mantenimiento preventivos y generales de todas las marcas de equipos que comercializan.

La empresa cuenta con una amplia pero selectiva gama de proveedores internacionales para la importación de los productos comercializados por la empresa como: Equipos UPS, TVSS, rectificadores, inversores, baterías, sistemas de alarmas contra incendio, piso falso, aires acondicionados industriales, entre otros.

CELCO CIA. LTDA. opera en todos los sectores de actividad con procesos de negocio soportados por cargas críticas proporcionando soluciones de energía de alta disponibilidad y calidad adaptadas a todo tipo de aplicaciones: Telecomunicaciones, Procesos Industriales, Tecnologías de la información, Medicina y Sanidad, Laboratorios, Industria farmacéutica, Petroquímica y Energía, Servicios, Industria

informática, Administración, Bancos, Finanzas y Seguros, Transportes, Infraestructura, Medios de comunicación, e instalaciones para pequeñas oficinas.

Desde sus oficinas en las ciudades de Quito, Guayaquil y Cuenca distribuye sus productos y servicios por todo el país para satisfacer las necesidades de sus clientes, además de entregar productos y brindar servicios en las demás ciudades del país con un recargo adicional de envió, transporte y personal para cubrir el mercado nacional.

Maneja lo que son grandes contratos de mantenimiento Preventivo y Correctivo para equipos: Visitas preventivas para determinar mediante un protocolo de servicio estándar el estado actual de sus equipos, garantizando la continuidad de su operación en las industrias, visitas correctivas con personal entrenado y certificado por nuestros fabricantes para atender sus requerimientos en horarios 7 x 24 x 365. Tienen a la disposición un amplio inventario de repuestos logrando un óptimo tiempo de respuesta ante cualquier falla.

Entre los principales productos/servicios se destacan los siguientes 4 ítems:

- Sistemas de UPS: Importación, venta e instalación incluyendo toda la acometida eléctrica desde la distribución del tablero principal de la empresa eléctrica hasta el UPS. También ensamblan en las oficinas bancos de baterías y muebles de transformadores para los UPS.
- 2. *Proyectos Industriales:* Implica lo que es la importación, venta y puesta en marcha de generadores y motores eléctricos y toda su acometida eléctrica que esto conlleva. Así mismo de instalación de piso falso, sistemas de aire

acondicionados industriales y sistemas contra incendio. Generalmente para la aplicación de centros de cómputo.

- 3. *Baterías:* Cuentan con varias soluciones para todas sus necesidades. Desde baterías 12v-4ah hasta baterías para celdas de alta tensión de hasta 1000ah.
- 4. *Energía Alternativa:* Proyectos fotovoltaicos, energía eólica; soluciones domésticas y comerciales.

Los departamentos que requieren una mejor iluminación debido al trabajo que se realiza en esas áreas, son el área de ensamblaje y laboratorio electrónico, puesto que en estos lugares las maniobras que se realizan son de sumo cuidado y mucha precisión, requieren una amplia visualización de objetos pequeños y el manejo de herramientas que requieren un uso adecuado.

En estas dos áreas se realiza lo siguiente:

- Tableros eléctricos de distribución
- Gabinetes de transformadores
- Gabinetes de bancos de baterías
- Reparación de tarjetas electrónicas de los equipos
- ❖ Pruebas de funcionamiento de los UPS en caliente

5.2. Plano de las instalaciones con la carga actual

Debido a que el estudio se centra en la oficina matriz de la empresa CELCO CIA. LTDA. la cual está ubicada en la ciudad de Quito, se procede a realizar el levantamiento de las instalaciones y de cada uno de los departamentos en los que se

distribuye la oficina y de la distribución con las ubicaciones de las 90 lámparas con las que actualmente se encuentra funcionando la empresa, el cual se muestra en la siguiente figura 27:

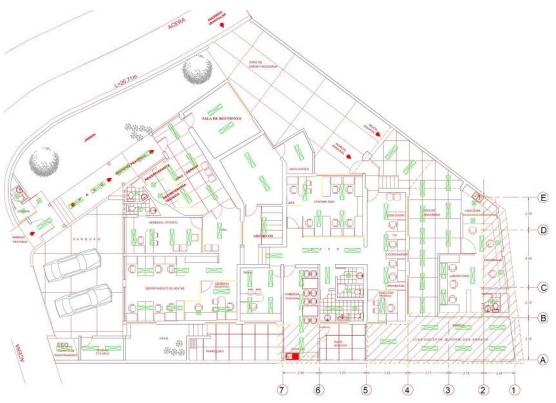


Figura 27. Ubicación actual de lámparas en CELCO

Fuente: CELCO CIA. LTDA.

En las oficinas podemos encontrar dos modelos distintos de lámparas, siendo los únicos usados en toda la localidad. Los modelos los describimos en la siguiente tabla 7:

Tabla 7. Modelos de lámparas en instalaciones de CELCO

Lámpara	Marca	Modelo	Descripción	Potencia [W]
Modelo 1	SYLVANIA	Luminaria MIRRORS Optics 30x120 T8 Sobreponer	Usa 2 Tubos Fluorescentes: 40W, T12, longitud 48", 6500ºK, Base G13	80
Modelo 2	SYLVANIA	Luminaria MIRRORS Optics 60x60 T8 Sobreponer	Usa 4 Tubos Fluorescentes: 17W, T8, longitud 24", 6500ºK, Base G13	68

Fuente: Tríptico de luminarias Modulares SYLVANIA

Las unidades de lámparas instaladas del modelo 1 son 74, el número de lámparas instaladas por el modelo 2 son 16.

Según el plano del levantamiento de la oficina de CELCO-QUITO mencionado con anterioridad, se detallan los departamentos/áreas considerados a realizar el estudio con su respectivo número de lámparas por departamento y modelo de luminaria para los cálculos posteriores:

Tabla 8. Carga actual en la oficina

n°	3. Carga actual en la oficina Departamento/Área	Modelo	N°	Potencia	
<u>''</u>	Departamento/Area	Modelo	lámparas	Total [W]	
1	Área de maniobras	Modelo 1	11	880	
2	Ensamblaje	Modelo 1	1	80	
		Modelo 2	3	204	
3	Laboratorio	Modelo 1	3	240	
4	Bodega	Modelo 1	7	560	
5	Técnico	Modelo 1	4	320	
6	Contabilidad	Modelo 1	4	320	
7	Comedor	Modelo 1	4	320	
8	Datacenter	Modelo 1	1	80	
9	Recursos Humanos	Modelo 1	4	320	
10	Sala de reuniones	Modelo 1	2	160	
11	Archivos	Modelo 1	1	80	
12	Ventas	Modelo 1	5	400	
13	Gerencia Regional	Modelo 1	2	160	
		Modelo 2	1	68	
14	Gerencia General	Modelo 1	4	320	
15	Recepción	Modelo 1	5	400	
		Modelo 2	2	136	
16	Garita/Ingreso Peatonal	Modelo 1	5	400	
		Modelo 2	3	204	
17	Bodega Tvcable	Modelo 1	2	160	
18	Áreas comunales /	Modelo 1	6	480	
	Pasillos	Modelo 2	1	68	
19	Baños	Modelo 1	2	160	
		Modelo 2	6	408	
20	EEQ Cuarto de Transformadores	Modelo 1	1	80	

Fuente: CELCO CIA. LTDA.

5.3. Análisis del consumo eléctrico

Previo a empezar a proyectar el estudio costo-beneficio de las diferentes propuestas que se realizarán en este proyecto, es necesario comparar el consumo eléctrico del sistema de iluminación que poseen actualmente en CELCO.

Una de las maneras para obtener este valor por consumo eléctrico mensual, es verificando directamente en la planilla que entrega la empresa eléctrica de Quito. El inconveniente de estos datos de la planilla, es que muestran un valor general total, y no podríamos desmenuzar los valores para poder obtener el valor real por consumo del sistema de iluminación. Así que los pasos a seguir para conseguir los valores de consumo por concepto de iluminación serán los siguientes:

a) Con la información que tenemos de las lámparas para obtener el consumo total diario de cada departamento, debemos hacer un estimado con la información dada por CELCO acerca del número de horas diarias en las cuales las lámparas pasan encendidas y multiplicarlo por el consumo de las lámparas de cada departamento, en base a si es modelo 1 o modelo 2.

 $KWh_{diarioarea}=(P_{diarioarea})(\#horasdiariasencedido)$ Ecuación 1. KWh diario por área

 La sumatoria de todos los KWh de cada área, sería el consumo total diario en toda la oficina.

$$KWh_{diariototal} = \sum KWh_{Cadaarea}$$
 Ecuación 2. KWh diario total por todas las áreas

c) Luego este valor al ser diario y por tratarse de una oficina más no una industria, lo multiplicamos por 22. Este valor es estimado considerando un mes de 30 días y excluyendo 4 fines de semana del mes en los que no se labora normalmente.

$$KWh_{mensual} = (KWh_{diariototal})(22) \label{eq:kwh}$$
 Ecuación 3. KWh total mensual

Los resultados obtenidos del procedimiento anteriormente mencionado se resumen en la tabla 9 que se muestra a continuación:

Tabla 9. Consumo eléctrico mensual

n°	Departamento/Área	Carga [W]	Tiempo [h]	Consumo
4	,			diario [KWh]
1	Área de maniobras	880	6	5,280
2	Ensamblaje	80	10	0,800
L		204	10	2,040
3	Laboratorio	240	9	2,160
4	Bodega	560	9	5,040
5	Técnico	320	9	2,880
6	Contabilidad	320	9	2,880
7	Comedor	320	3	0,960
8	Datacenter	80	1	0,080
9	Recursos Humanos	320	9	2,880
10	Sala de reuniones	160	3	0,480
11	Archivos	80	1	0,080
12	Ventas	400	10	4,000
13	Gerencia Regional	160	10	1,600
		68	8	0,544
14	Gerencia General	320	10	3,200
15	Recepción	400	9	3,600
		136	9	1,224
16	Garita/Ingreso Peatonal	400	3	1,200
		204	14	2,856
17	Bodega Tvcable	160	1	0,160
18	Áreas comunales /	480	9	4,320
	Pasillos	68	9	0,612
19	Baños	160	2	0,320
		408	1	0,408
20	EEQ Cuarto de Transformadores	80	1	0,080
			Total diario [KWh]	49,7
			Total mensual [KWh]	1.093,0

Fuente: CELCO CIA. LTDA.

De acuerdo a lo establecido en la resolución 034/11 por el Consejo Nacional de Electricidad (CONELEC) consta el pliego tarifario con el cuadro del coste de la energía eléctrica. El pliego contempla 13 valores para el kilovatio/hora (KWh) de acuerdo al consumo y se muestra en la tabla 10 a continuación:

Tabla 10. Valores para el KWh en Ecuador

CARGO TARIFARIO	ESQUEMA (¢USD/kWh)			
RANGO DE CONSUMO	QUITO	GUAYAQUIL	RESTO DE EMPRESAS	
0 - 50	6.80	6.80	8.10	
51 - 100	7.10	7.10	8.30	
101 - 150	7.30	7.30	8.50	
151 - 200	8.00	8.00	8.70	
201 - 250	8.70	8.60	8.90	
251 - 300	8.90	9.30	9.10	
301 - 350	8.90	9.30	9.30	
351 - 500	8.90	9.30	9.50	
501 - 750		11	1.85	
751 - 1000	16.05			
1001 - 1500	26.48			
1501 - 2000	42.56			
Sup > 2000		67	7.12	

Fuente: Resolución 034/11 CONELEC

Tomando en referencia una planilla del mes de Noviembre del 2013 de la compañía, podemos verificar que ese mes la empresa tuvo un consumo total de energía eléctrica de 4230KWh. Con ese valor y basándonos en la tabla 5 nos ubicamos en el rango de consumo superior a 2000KWh con un valor de 67.12 centavos por KWh.

61

Entonces, el valor mensual en USD solo por concepto de consumo de

iluminación en la empresa es de:

 $Valormensual_{USD} = (Totalmensual_{KWh})(ValorKWh_{USD})$

 $Valormensual_{USD} = (1.093,0)(0.6712)$

 $Valormensual_{USD} = USD 733,62$

Ecuación 4. Valor en USD mensual por sistema de iluminación actual

En conclusión, después de haber recolectado la información necesaria y

complementaria con la empresa y basándonos en reglamentos vigentes del

CONELEC, tenemos como resultado que la empresa paga un valor de \$733.62

aproximadamente mensualmente por concepto del sistema de iluminación que

poseen actualmente instalados en sus oficinas. Esto, asumiendo los meses de escasez

de energía eléctrica que suelen presentarse a nivel nacional y además según las

condiciones anteriormente mencionadas.

5.4. Propuestas para el reemplazo de las lámparas actuales

Un tubo fluorescente de 40W ilumina aproximadamente 1000 lúmenes,

mientras un tubo fluorescente de 17W ilumina aproximadamente 300 lúmenes.

Con toda la información anteriormente detallada, procedemos a realizar las

siguientes 3 propuesto para el reemplazo del sistema de iluminación actual de la

empresa CELCO CIA. LTDA.:

5.4.1. Propuesta #1: Reemplazo con lámparas panel de luz LED

A continuación la primera propuesta consta del reemplazo de lo actual con las siguientes luminarias:

Tabla 11. Propuesta #1: Modelos para reemplazar la luminaria actual

Lámpara que reemplaza a	Descripción	Potencia [W]
Modelo 1 - SP-P36WA-0312	a) Dimensiones: 300*1200*12[mm] b) Fuente de luz: SMD3014 c) Temperatura de color: 5000K d) Flujo luminoso: 2800Lm e) Valor por unidad: \$96,33	36
Modelo 2 - SP-P18WA-0303	a) Dimensiones: 300*1200*12[mm] b) Fuente de luz: SMD3014 c) Temperatura de color: 5000K d) Flujo luminoso: 1400Lm e) Valor por unidad: \$66,22	18

Fuente: SEIPRO INDUSTRY CO. LTD

La tabla 11 nos muestra la propuesta #1 que consiste en dos tipos de panel de luz LED de 36W y 18W para el reemplazo de las lámparas actuales en la empresa. Cumplen con los lúmenes requeridos para el reemplazo de 2800Lm y 1400Lm respectivamente, para las distintas áreas de trabajo de la empresa, con un color de temperatura de 5000K para cada una siendo este el más adecuado para los lugares de

trabajo en oficina. Las lámparas tipo panel de luz LED cuenta con las siguientes ventajas como que son de alto brillo, alta eficiencia y aportan con un ahorro sustancial de energía. Son anti-humedad, no poseen plomo ni mercurio. Por último, son ampliamente utilizadas en áreas residenciales, restaurantes, habitaciones de hotel, y son perfectas para oficinas. Tienen un tiempo de vida útil aproximado de 50.000 horas (aproximadamente 6 años) a pleno funcionamiento y garantía por 3 años. Con el proveedor que realizamos la cotización de estas lámparas, SEIPRO INDUSTRY CO. LTD en China, aseguran que todos sus productos son rigurosamente inspeccionados antes de la entrega y todos ellos cuentan con la certificación CE y RoHS.

Con la propuesta #1, obtenemos la siguiente tabla 12 que nos muestra la carga en [W] que tendría cada departamento:

Tabla 12. Propuesta #1: Carga [W] por departamento

	Departements / Área		N°	Potencia
n°	Departamento/Área	Modelo	lámparas	Total [W]
1	Área de maniobras	Modelo 1	11	396
2	Ensamblaje	Modelo 1	1	36
		Modelo 2	3	54
3	Laboratorio	Modelo 1	3	33
4	Bodega	Modelo 1	7	252
5	Técnico	Modelo 1	4	144
6	Contabilidad	Modelo 1	4	144
7	Comedor	Modelo 1	4	144
8	Datacenter	Modelo 1	1	36
9	Recursos Humanos	Modelo 1	4	144
10	Sala de reuniones	Modelo 1	2	72
11	Archivos	Modelo 1	1	36
12	Ventas	Modelo 1	5	180
13	Gerencia Regional	Modelo 1	2	72
		Modelo 2	1	18
14	Gerencia General	Modelo 1	4	144
15	Recepción	Modelo 1	5	180
		Modelo 2	2	36
16	Garita/Ingreso Peatonal	Modelo 1	5	180
		Modelo 2	3	54
17	Bodega Tvcable	Modelo 1	2	72
18	Áreas comunales /	Modelo 1	6	216
	Pasillos	Modelo 2	1	18
19	Baños	Modelo 1	2	72
		Modelo 2	6	108
20	EEQ Cuarto de Transformadores	Modelo 1	1	36

Con estos nuevos valores en comparación a los que poseen con las lámparas actuales, obtenemos la siguiente tabla 13 que muestra el consumo mensual total en [KWh] que tendrían con esta propuesta #1:

Tabla 13. Propuesta #1: Consumo mensual total [KWh]

n°	Departamento/Área			Consumo
	Departamento/Área	Carga [W]	Tiempo [h]	diario [KWh]
1	Área de maniobras	396	6	2,376
2	Ensamblaje	36	10	0,360
		54	10	0,540
3	Laboratorio	33	9	0,297
4	Bodega	252	9	2,268
5	Técnico	144	9	1,296
6	Contabilidad	144	9	1,296
7	Comedor	144	3	0,432
8	Datacenter	36	1	0,036
9	Recursos Humanos	144	9	1,296
10	Sala de reuniones	72	3	0,216
11	Archivos	36	1	0,036
12	Ventas	180	10	1,800
13	Gerencia Regional	72	10	0,720
		18	8	0,144
14	Gerencia General	144	10	1,440
15	Recepción	180	9	1,620
		36	9	0,324
16	Garita/Ingreso Peatonal	180	3	0,540
		54	14	0,756
17	Bodega Tvcable	72	1	0,072
18	Áreas comunales /	216	9	1,944
	Pasillos	18	9	0,162
19	Baños	72	2	0,144
		108	1	0,108
20	EEQ Cuarto de Transformadores	36	1	0,036
			Total diario [KWh]	20,3
			Total mensual [KWh]	445,7

Con un valor total mensual de 445.7 KWh, procedemos a verificar el valor mensual en USD que consumirían por el sistema de iluminación al escoger la propuesta #1:

 $Valormensual_{USD} = (Totalmensual_{KWh})(ValorKWh_{USD})$ $Valormensual_{USD} = (445.7)(0.6712)$ $Valormensual_{USD} = USD \ 299.15$ Ecuación 5. Propuesta #1: Valor en USD mensual

Los resultados obtenidos de consumo de energía y ahorro en dólares del sistema de iluminación actual en comparación con la propuesta #1 se resumen en la siguiente tabla 14:

Tabla 14. Propuesta #1: Consumo de energía y ahorro en dólares

Consumo total mensual [KWh] iluminación	
actual - FLUORESCENTES	1.033,0
Consumo total mensual [KWh] iluminación	445,7
PROPUESTA #1 - LED	445,7
Ahorro por Propuesta #1 por mes [KWh]	647,3
Ahorro por Propuesta #1 por año [KWh]	7.767,6
Ahorro por Propuesta #1 por año [USD]	\$ 5.213,61

Con la propuesta #1 podemos observar que obtendríamos un ahorro anual aproximado de 7.767,6 KWh lo que significaría un ahorro económico anual aproximado de \$5.213,61.

Tabla 15. Propuesta #1: Costo total para el reemplazo

Descripción		Valor
Lámpara Panel de luz LED modelo 1 (Unidad)	\$	96,33
Lámpara Panel de luz LED modelo 2 (Unidad)	\$	66,22
Lámpara Panel de luz LED modelo 1 (74)	\$	7.128,42
Lámpara Panel de luz LED modelo 2 (16)	\$	1.059,52
Valor total (90 lámparas)	\$	8.187,94

En la tabla 15 podemos visualizar el detalle de los costos de las lámparas de la propuesta #1 que requerirá invertir la empresa para poder modificar su actual sistema de iluminación. En esta tabla no se considera la mano de obra ni materiales otros adicionales para la instalación puesto que se asume que el reemplazo de las luminarias se realizará por técnicos propios de la compañía en horas laborables de la empresa y también se usarán las acometidas eléctricas actuales. El valor total para el reemplazo de las 90 lámparas que conforman el sistema de iluminación actual por lámparas panel de luz LED es de \$8.187,94.

Tabla 16. Propuesta #1: Período de recuperación de la inversión

Inversión total (USD)	\$ 8.187,94
Ahorro por Propuesta #1 por año [USD]	\$ 5.213,61
Período de recuperación de la inversión (meses)	19
Período de recuperación de la inversión (años)	1,6

Finalizando la propuesta #1, requerimos un aproximado de 19 meses o 1,6 años como período de recuperación de la inversión por el reemplazo de las lámparas fluorescentes existentes.

5.4.2. Propuesta #2: Reemplazo con tubos LED

A continuación la primera propuesta consta del reemplazo de lo actual con las siguientes luminarias:

Tabla 17. Propuesta #2: Modelos para reemplazar la luminaria actual

Lámpara que reemplaza a	Descripción	Potencia [W]
Modelo 1 - ENLT-T8120SMD-01	 a) Dimensiones: 1198 Φ26 [mm] b) Fuente de luz: 168 Leds c) Temperatura de color: 5500K d) Flujo luminoso: 2160Lm e) Valor por unidad: \$28,89 	18
Modelo 2 - ENLT-T8060SMD-01	a) Dimensiones: 590 Φ26 [mm] b) Fuente de luz: 84 Leds c) Temperatura de color: 5500K d) Flujo luminoso: 1080Lm e) Valor por unidad: \$17,56	9

Fuente: ENELTEC CO. LTD

La tabla 17 nos muestra la propuesta #2 que consiste en dos tipos de tubos LED de 18W y 9W para el reemplazo de las lámparas. Cumplen con los lúmenes requeridos para el reemplazo de 2160Lm y 1080Lm respectivamente, para las distintas áreas de trabajo de la empresa, con un color de temperatura de 5500K para cada una siendo este el más adecuado para los lugares de trabajo en oficina. Las

lámparas tipo tubos LED cuenta con las siguientes ventajas como el ahorro de electricidad hasta un 60% en comparación con los tubos fluorescentes, es respetuoso con el medio ambiente (sin mercurio), reducción en las emisiones de CO2 por lo que no contribuye con el calentamiento global, la mayor parte del tubo de LED pueden sustituir directamente la lámpara fluorescente, el brillo del tubo del LED es suave y su fuente de emite un espectro puro a favor de la visión de los trabajadores. Es ampliamente utilizado en oficinas, fábricas, centros comerciales, escuelas, casas y otras de iluminación interior como fuentes de luz decorativas. Tienen un tiempo de vida útil aproximado de 50.000 horas (aproximadamente 6 años) a pleno funcionamiento y garantía por 3 años. Con el proveedor que realizamos la cotización de estas lámparas, ENELTEC CO. LTD en Shanghai, aseguran que todos sus productos son rigurosamente inspeccionados antes de la entrega y todos ellos cuentan con la certificación CE y RoHS.

Con la propuesta #2, obtenemos la siguiente tabla 17 que nos muestra la carga en [W] que tendría cada departamento:

Tabla 18. Propuesta #2: Carga [W] por departamento

n°	Departamento/Área	Modelo	N° lámparas	Potencia Total [W]
1	Área de maniobras	Modelo 1	11	396
2	Ensamblaje	Modelo 1	1	36
		Modelo 2	3	108
3	Laboratorio	Modelo 1	3	108
4	Bodega	Modelo 1	7	252
5	Técnico	Modelo 1	4	144
6	Contabilidad	Modelo 1	4	144
7	Comedor	Modelo 1	4	144
8	Datacenter	Modelo 1	1	36
9	Recursos Humanos	Modelo 1	4	144
10	Sala de reuniones	Modelo 1	2	72
11	Archivos	Modelo 1	1	36
12	Ventas	Modelo 1	5	180
13	Gerencia Regional	Modelo 1	2	72
		Modelo 2	1	36
14	Gerencia General	Modelo 1	4	144
15	Recepción	Modelo 1	5	180
		Modelo 2	2	72
16	Garita/Ingreso Peatonal	Modelo 1	5	180
		Modelo 2	3	108
17	Bodega Tvcable	Modelo 1	2	72
18	Áreas comunales /	Modelo 1	6	216
	Pasillos	Modelo 2	1	36
19	Baños	Modelo 1	2	72
		Modelo 2	6	216
20	EEQ Cuarto de Transformadores	Modelo 1	1	36

Con estos nuevos valores en comparación a los que poseen con las lámparas actuales, obtenemos la siguiente tabla 19 que muestra el consumo mensual total en [KWh] que tendrían con esta propuesta #2:

Tabla 19. Propuesta #2: Consumo mensual total [KWh]

Prop	Propuesta #2: Consumo mensual total [KWh]						
n°	Departamento/Área	Carga [W]	Tiempo [h]	Consumo diario [KWh]			
1	Área de maniobras	396	6	2,376			
2	Ensamblaje	36	10	0,360			
		108	10	1,080			
3	Laboratorio	108	9	0,972			
4	Bodega	252	9	2,268			
5	Técnico	144	9	1,296			
6	Contabilidad	144	9	1,296			
7	Comedor	144	3	0,432			
8	Datacenter	36	1	0,036			
9	Recursos Humanos	144	9	1,296			
10	Sala de reuniones	72	3	0,216			
11	Archivos	36	1	0,036			
12	Ventas	180	10	1,800			
13	Gerencia Regional	72	10	0,720			
		36	8	0,288			
14	Gerencia General	144	10	1,440			
15	Recepción	180	9	1,620			
		72	9	0,648			
16	Garita/Ingreso Peatonal	180	3	0,540			
		108	14	1,512			
17	Bodega Tvcable	72	1	0,072			
18	Áreas comunales /	216	9	1,944			
	Pasillos	36	9	0,324			
19	Baños	72	2	0,144			
		216	1	0,216			
20	EEQ Cuarto de Transformadores	36	1	0,036			
			Total diario [KWh]	23,0			
			Total mensual [KWh]	505,3			

Con un valor total mensual de 505,3 KWh, procedemos a verificar el valor mensual en USD que consumirían por el sistema de iluminación al escoger la propuesta #2:

 $Valormensual_{USD} = (Totalmensual_{KWh})(ValorKWh_{USD})$ $Valormensual_{USD} = (505.3)(0.6712)$ $Valormensual_{USD} = USD 339.16$

Ecuación 6. Propuesta #2: Valor en USD mensual

Los resultados obtenidos de consumo de energía y ahorro en dólares del sistema de iluminación actual en comparación con la propuesta #2 se resumen en la siguiente tabla 20:

Tabla 20. Propuesta #2: Consumo de energía y ahorro en dólares

Consumo total mensual [KWh] iluminación actual -	1.093,0
FLUORESCENTES	1.095,0
Consumo total mensual [KWh] iluminación	505,3
PROPUESTA #2 - tubos LED	303,3
Ahorro por Propuesta #2 por mes [KWh]	587,7
Ahorro por Propuesta #2 por año [KWh]	7.052,4
Ahorro por Propuesta #2 por año [USD]	\$ 4.733,57

Con la propuesta #2 podemos observar que obtendríamos un ahorro anual aproximado de 7.052,4 KWh lo que significaría un ahorro económico anual aproximado de \$4.733,57.

Tabla 21. Propuesta #2: Costo total para el reemplazo

Descripción		Valor
Lámpara tubo LED modelo 1 (Unidad)	\$	28,89
Lámpara tubo LED modelo 2 (Unidad)	\$	17,56
Lámpara tubo LED modelo 1 (148)	\$	4.275,72
Lámpara tubo LED modelo 2 (64)		1.123,84
Valor total (212 tubos para 90 lámparas)		5.399,56

En la tabla 21 podemos visualizar el detalle de los costos de las lámparas de la propuesta #2 que requerirá invertir la empresa para poder modificar su actual sistema de iluminación. En esta tabla no se considera la mano de obra ni materiales otros adicionales para la instalación puesto que se asume que el reemplazo de las luminarias se realizará por técnicos propios de la compañía en horas laborables de la empresa y también se usarán las acometidas eléctricas actuales. El valor total para el reemplazo de los 212 tubos de las 90 lámparas que conforman el sistema de iluminación actual por lámparas tubo LED es de \$5.399,56.

Tabla 22. Propuesta #2: Período de recuperación de la inversión

Inversión total (USD)	\$ 5.399,56
Ahorro por Propuesta #2 por año [USD]	\$ 4.733,57
Período de recuperación de la inversión (meses)	14
Período de recuperación de la inversión (años)	1,1

Finalizando la propuesta #2, requerimos un aproximado de 14 meses o 1,1 años como período de recuperación de la inversión por el reemplazo de las lámparas fluorescentes existentes.

5.4.3. Propuesta #3: Reemplazo con lámparas de inducción electromagnética

A continuación la primera propuesta consta del reemplazo de lo actual con las siguientes luminarias:

Tabla 23. Propuesta #3: Modelos para reemplazar la luminaria actual

Lámpara que reemplaza a	Descripción	Potencia [W]
Modelo 1 - LVD-ZX50000	a) Dimensiones: 600*600*130[mm] b) Fuente de luz: Smart dragon Series LVD-LL50W c) Temperatura de color: 5000K d) Flujo luminoso: 3500Lm e) Valor por unidad: \$90,78	50
Modelo 2 - LVD-ZX50000	a) Dimensiones: 600*600*130[mm] b) Fuente de luz: Smart dragon Series LVD-LL40W c) Temperatura de color: 5000K d) Flujo luminoso: 2800Lm e) Valor por unidad: \$88,33	40

Fuente: LVD SHANGHAI HONGYUAN LIGHTING & ELECTRICAL EQUIPMENT Co. Ltd.

La tabla 23 nos muestra la propuesta #3 que consiste en dos tipos de lámparas de inducción electromagnética de 50W y 40W para el reemplazo de las lámparas. Cumplen con los lúmenes requeridos para el reemplazo de 3500Lm y 2800Lm respectivamente, para las distintas áreas de trabajo de la empresa, con un color de temperatura de 5000K para cada una siendo este el más adecuado para los lugares de trabajo en oficina. Las lámparas de inducción cuenta con las siguientes ventajas como que el proveedor nos brinda 5 años de garantía desde la fecha del embarque de las lámparas por algún defecto de fabricación, tiene un excelente rendimiento de ahorro de energía, presenta un decaimiento del flujo luminoso menor al 5% a partir de las 20000 horas de uso, no produce deslumbramiento ni estroboscopia. Tienen un tiempo de vida útil aproximado de 80.000 horas (aproximadamente 9 años) a pleno funcionamiento y garantía por 3 años. Con el proveedor que realizamos la cotización de estas lámparas, LVD SHANGHAI HONGYUAN LIGHTING & ELECTRICAL

EQUIPMENT Co. Ltd., en Shanghai, aseguran que todos sus productos son rigurosamente inspeccionados antes de la entrega y todos ellos cuentan con la certificación CE y RoHS.

Con la propuesta #3, obtenemos la siguiente tabla 24 que nos muestra la carga en [W] que tendría cada departamento:

Tabla 24. Propuesta #3: Carga [W] por departamento

n°	Departamento/Área	Modelo	N°	Potencia
			lámparas	Total [W]
1	Área de maniobras	Modelo 1	11	550
2	Ensamblaje	Modelo 1	1	50
		Modelo 2	3	120
3	Laboratorio	Modelo 1	3	150
4	Bodega	Modelo 1	7	350
5	Técnico	Modelo 1	4	200
6	Contabilidad	Modelo 1	4	200
7	Comedor	Modelo 1	4	200
8	Datacenter	Modelo 1	1	50
9	Recursos Humanos	Modelo 1	4	200
10	Sala de reuniones	Modelo 1	2	100
11	Archivos	Modelo 1	1	50
12	Ventas	Modelo 1	5	250
13	Gerencia Regional	Modelo 1	2	100
		Modelo 2	1	40
14	Gerencia General	Modelo 1	4	200
15	Recepción	Modelo 1	5	250
		Modelo 2	2	80
16	Garita/Ingreso Peatonal	Modelo 1	5	250
		Modelo 2	3	120
17	Bodega Tvcable	Modelo 1	2	100
18	Áreas comunales /	Modelo 1	6	300
	Pasillos	Modelo 2	1	40
19	Baños	Modelo 1	2	100
		Modelo 2	6	240
20	EEQ Cuarto de Transformadores	Modelo 1	1	50

Con estos nuevos valores en comparación a los que poseen con las lámparas actuales, obtenemos la siguiente tabla 25 que muestra el consumo mensual total en [KWh] que tendrían con esta propuesta #3:

Tabla 25. Propuesta #3: Consumo mensual total [KWh]

. Fro	puesta #3: Consumo mensu	ai totai [Kwn		
n°	Departamento/Área	Carga [W]	Tiempo [h]	Consumo
				diario [KWh]
1	Área de maniobras	550	6	3,300
2	Ensamblaje	50	10	0,500
		120	10	1,200
3	Laboratorio	150	9	1,350
4	Bodega	350	9	3,150
5	Técnico	200	9	1,800
6	Contabilidad	200	9	1,800
7	Comedor	200	3	0,600
8	Datacenter	50	1	0,050
9	Recursos Humanos	200	9	1,800
10	Sala de reuniones	100	3	0,300
11	Archivos	50	1	0,050
12	Ventas	250	10	2,500
13	Gerencia Regional	100	10	1,000
		40	8	0,320
14	Gerencia General	200	10	2,000
15	Recepción	250	9	2,250
		80	9	0,720
16	Garita/Ingreso Peatonal	250	3	0,750
		120	14	1,680
17	Bodega Tvcable	100	1	0,100
18	Áreas comunales /	300	9	2,700
	Pasillos	40	9	0,360
19	Baños	100	2	0,200
		240	1	0,240
20	EEQ Cuarto de Transformadores	50	1	0,050
			Total diario [KWh]	30,8
			Total mensual [KWh]	676,9

Con un valor total mensual de 676,9 KWh, procedemos a verificar el valor mensual en USD que consumirían por el sistema de iluminación al escoger la propuesta #3:

 $Valormensual_{USD} = (Totalmensual_{KWh})(ValorKWh_{USD})$ $Valormensual_{USD} = (676.9)(0.6712)$ $Valormensual_{USD} = USD \ 454.34$ Ecuación 7. Propuesta #3: Valor en USD mensual

Los resultados obtenidos de consumo de energía y ahorro en dólares del sistema de iluminación actual en comparación con la propuesta #3 se resumen en la siguiente tabla 26:

Tabla 26. Propuesta #3: Consumo de energía y ahorro en dólares

Consumo total mensual [KWh] iluminación actual - FLUORESCENTES	1.093,0
Consumo total mensual [KWh] iluminación PROPUESTA #3 - lámparas de inducción	676,9
Ahorro por Propuesta #3 por mes [KWh]	416,1
Ahorro por Propuesta #3 por año [KWh]	4.993,2
Ahorro por Propuesta #3 por año [USD]	\$ 3.351,44

Con la propuesta #3 podemos observar que obtendríamos un ahorro anual aproximado de 4.993,2 KWh lo que significaría un ahorro económico anual aproximado de \$3.351,44.

Tabla 27. Propuesta #3: Costo total para el reemplazo

Descripción	Valor
Lámpara de inducción modelo 1 (Unidad)	\$ 90,78
Lámpara de inducción modelo 2 (Unidad)	\$ 88,33
Lámpara de inducción modelo 1 (74)	\$ 6.717,72
Lámpara de inducción modelo 2 (16)	\$ 1.413,28
Valor total (90 lámparas)	\$ 8.131,00

En la tabla 27 podemos visualizar el detalle de los costos de las lámparas de la propuesta #3 que requerirá invertir la empresa para poder modificar su actual sistema de iluminación. En esta tabla no se considera la mano de obra ni materiales otros adicionales para la instalación puesto que se asume que el reemplazo de las luminarias se realizará por técnicos propios de la compañía en horas laborables de la empresa y también se usarán las acometidas eléctricas actuales. El valor total para el reemplazo de las 90 lámparas que conforman el sistema de iluminación actual por lámparas de inducción es de \$8.131,00.

Tabla 28. Propuesta #3: Período de recuperación de la inversión

Inversión total (USD)	\$ 8.131,00
Ahorro por Propuesta #3 por año [USD]	\$ 3.351,44
Período de recuperación de la inversión (meses)	29
Período de recuperación de la inversión (años)	2,4

Finalizando la propuesta #3, requerimos un aproximado de 29 meses o 2,4 años como período de recuperación de la inversión por el reemplazo de las lámparas fluorescentes existentes.

CONCLUSIONES

Para poder apreciar los resultados y realizar una comparación entre las tres propuestas para el reemplazo del sistema de iluminación que posee actualmente la empresa CELCO CIA. LTDA., se procede a detallarlos en la siguiente tabla 29 comparativa:

Tabla 29. Cuadro comparativo de las propuestas para la iluminación

Tubia 25. Cadaro comp	aranvo de las propuestas	para ta tiantina	cion	
Sistema de iluminación ACTUAL		Propuesta #1	Propuesta #2	Propuesta #3
Lámparas Fluorescentes		Paneles de luz LED	Tubos LED	Inducción electromagnética
2 tubos fluorescentes de 40W = total 80W	Modelo 1	36	2 tubos de 18W = total 36W	50
4 tubos fluorescentes de 17W = total 68W	Modelo 2	18	4 tubos de 9W = total 36W	40
1093	Ahorro por propuesta por año [KWh]	//b/ ₋ b	7052,4	4993,2
\$ 8.803,44	Ahorro por propuesta por año [USD]	4 571361	\$ 4.733,57	\$ 3.351,44
NA	Valor total de la adquisición [USD]	IS 8 187 94 I	\$ 5.399,56	\$ 8.131,00
NA	PRI (meses)	19	14	29

❖ La propuesta #1 es la que proporciona el mayor ahorro anual en [KWh], sin embargo, no existe una diferencia muy significativa del ahorro entre la propuesta #1 y la propuesta #2. Apenas la diferencia entre las dos propuestas llega a 715,2KWh. En cambio al compararlo con la propuesta #3 la diferencia es notoria, la misma es de 2.774,4Kwh lo que si marca una pauta para poder tomar una decisión en relación a cuál sería la propuesta más adecuada que la propuesta debería adoptar.

Cabe destacar que no significa que la tecnología de la propuesta #3 no es lo suficiente ahorrativa en comparación con las otras dos propuestas. Las lámparas de inducción electromagnéticas, según lo investigado con varios fabricantes de estas en China, indican que estas lámparas vienen en potencias elevadas, generalmente la menor potencia que se encuentra en el mercado para lámparas de oficina son de 40W y 50W, y es justo la menor potencia que hemos usado en este proyecto.

❖ La propuesta que genera un menor ahorro anual [USD] es la propuesta #3 de las lámparas de inducción electromagnética. Con una diferencia de \$1.862,17 con la propuesta #1 siendo la que más ahorro generaría a la empresa.

Como ya lo explicamos anteriormente, las razones por la que la propuesta #3 ocupa este lugar se debe a que esta tecnología tiene mayor aplicación en zonas industriales, bodegas, estadios, carreteras, parques, iluminación pública en lugares muy amplios que requieran una amplia iluminación ya que la fabricación de estas lámparas es de potencias altas.

❖ La propuesta que requiere un mayor costo de inversión para la adquisición de las lámparas es la de la propuesta #1.

Pero al ser la propuesta que genera mayor ahorro económico, su costo de inversión no llega a representar un mayor inconveniente.

❖ La propuesta que requiere menos período de recuperación de la inversión (PRI)
 es la propuesta #2. La diferencia de este valor con la propuesta #1 no es de más

5 meses, una cifra no muy significativa al momento de tomar una decisión por alguna de las dos propuestas.

Sin embargo, al ver el PRI de la propuesta #3 tiene una diferencia de 15 meses, lo cual es un dato muy importante que debería ser tomado en cuenta para el estudio final.

❖ A pesar de que este trabajo de grado fue realizado en un enfoque del impacto económico que genera la iluminación de lámparas tipo fluorescente y que podrían ser reemplazadas con las propuestas de nuevas tecnologías mayormente ahorradoras y amigables para el medio ambiente, se debe que recalcar que la correcta iluminación es un tema necesario dentro de las áreas de oficina incluso para llegar a evitar accidentes en el trabajo, debido a que no se puede percibir con claridad ni se puede reaccionar a tiempo a situaciones que podrían evitarse con un correcto alumbramiento.

Además, una mala iluminación contribuye a que los empleados adopten posturas inadecuadas desde el punto de vista ergonómico. Como por ejemplo en los pasillos de los edificios generalmente no consideran una iluminación uniforme, y el diario tránsito de los empleados por estos caminos durante tiempos prolongados (considerando años) puede causar un aumento en la medida de la incapacidad visual. La incorrecta distribución y elección de los lúmenes para las luminarias en un área de oficina induce al trabajador a sentir fatiga e incluso afectando en la visibilidad de sus tareas.

❖ La hipótesis planteada al inicio del desarrollo de este trabajo de titulación se señala como cierta como lo podemos mostrar en la siguiente tabla comparativa:

Tabla 30. Tabla comparativa del porcentaje de ahorro con cada propuesta establecida

	Valor de consumo mensual [KWh]	Porcentaje de Ahorro con respecto a la Iluminación Actual [%]
Iluminación Actual Fluorescentes	1093	-
Propuesta #1 Paneles de luz Led	445,7	59,22
Propuesta #2 Tubos Led	505,3	53,77
Propuesta #3 Induccion	676,9	38,07

Las tres propuestas generan un ahorro en KWh mayor al 30% del que posee actualmente la empresa CELCO. Siendo la propuesta #1 de los paneles de luz Led la que mayor porcentaje de ahorro genera con un 59,22%, la propuesta #2 genera un ahorro del 53,77% y la propuesta #3 genera un ahorro del 38,07%.

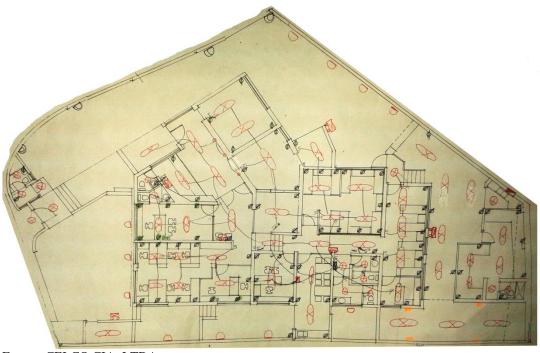
RECOMENDACIONES

- 1. Con respecto a la iluminación se recomienda lo siguiente:
- ❖ En lo posible usar la luz natural en áreas de pasillos o donde la visibilidad no es un requerimiento fundamental lo cual también contribuiría en el ahorro energético.
- Si esta luz natural no es suficiente para el área escogida, se debe auxiliar con iluminación artificial de apoyo.
- Asegurarse de escoger la potencia adecuada, con los lúmenes requeridos para las distintas áreas de trabajo. Preferiblemente con las indicaciones directamente de fábrica como en este trabajo fue realizado.
- Comprobar que sean correctas las posiciones de las lámparas en el área de la oficina y asegurarse de colocar una cantidad que sea suficiente.
- ❖ Iluminar el área de las tareas de la forma más uniforme posible, preferiblemente que las lámparas a usar no generen un solo punto de luz y que generen una luz uniforme.
- 2. Después de analizar las conclusiones, recomendaciones y con los resultados de las tres propuestas expuestas anteriormente, las dos mejores propuestas son la #1 y la #2. Se recomienda que la empresa debería inclinarse en adaptar su sistema de iluminación actual con la de la tecnología de la propuesta #1. Debido a que aunque no es la propuesta que menor tiempo de PRI tiene, los paneles de luz LED tiene como ventaja sobre los tubos Led que:

- ❖ No crean un punto de luz que a la larga afecta en la capacidad visual de los trabajadores y contribuye a la fatiga visual y demás.
- ❖ Estéticamente si la empresa se arriesga a adquirir un nuevo sistema de iluminación, hacerlo de una manera completa, sin tener que reutilizar la base G13 de las lámparas de tubos fluorescentes como tuviera que hacerlo con los tubos led ya que no se conoce el estado actual de las mismas.
- ❖ El ahorro económico anual es el mayor de las tres propuestas y al haber superado el PRI, de ahí en adelante genera un ahorro mayor en comparación con la propuesta #2 de los tubos Led.
- 3. En el desarrollo de este proyecto, los valores de las lámparas propuestas fueron consultadas con 3 proveedores distintos en China, y debido que CELCO CIA. LTDA. realiza importación de equipos, baterías entre otros, el proceso de importación de las lámparas a adquirir sería sencillo en cuestión de logística. Pero si la idea es implementar esta sustitución de lámparas fluorescentes por nueva tecnología, se recomienda que las empresas que no están familiarizadas y no realizan importaciones de sus productos, deben cotizar localmente las lámparas para obtener un verdadero valor real en cuestión de ahorro en [KWh], ahorro en USD y el PRI.
- 4. Además, así como en este estudio realizado al ser CELCO CIA. LTDA. una empresa que está vinculada en trabajos eléctricos, es recomendable usar mano de

obra propia en lo mayormente posible al realizar el reemplazo del sistema de iluminación, para que el costo por este rubro no afecte notablemente en el valor total de la adquisición de las lámparas y por ende en el valor del PRI.

5. Se recomienda elaborar un plan de mantenimiento anual a las luminarias y que este así mismo pueda ser realizado por personal de la empresa, ya que no es algo complicado, es más cuestión de poco cuidado para así también poder aprovechar al máximo su tiempo de garantía que ofrece el proveedor.


ANEXOS

Anexo 1. Consumos de energía para Servicio público (enero del 2014)

Consumos de Energía para Servicio Público		GWh	%
Consumo de Energía a Nivel Nacional	Residencial	5,919	34.53%
	Comercial	3,512	20.49%
	Industrial	5,024	29.32%
	A. Público	969	5.65%
	Otros	1,715	10.01%
Total		\$ 17.137,91	100.00%
Perdidas en Distribución	Técnicas	1,640.97	8.36%
	No Técnicas	847.18	4.32%
Total Perdidas de Energía en Distribución		\$ 2.488,15	12.68%
Recaudación	USD Facturados (Millones)	1,363.99	
USD Recaudados (Millones)		\$ 1.362,58	99.90%

Fuente: CONELEC - BALANCE NACIONAL DE ENERGÍA ELÉCTRICA

Anexo 2. Levantamiento en campo de lámparas del sistema de iluminación actual de la empresa

Fuente: CELCO CIA. LTDA.

Anexo 3. Levantamiento en AUTOCAD del plano de la oficina y de lámparas del sistema de iluminación actual de la empresa

Anexo 4. Cotizaciones de Proveedores de lámparas para propuestas

1. LVD

Shanghai Hongyuan Lighting & Electric Equipment Co.,Ltd

No.5028, Zhennan Road, Shanghai, 201802, China. Tel: +86-21-3912-0199 Fax:+86-21-5912-9722

PROFORMA INVOICE

					ı	Date:	2014-3-27
FROM(SHIPPER/EXP	ORTER):		P/O	No.		P/I No.
Shangl	hai Hongyuan I	Lighting&Elect	ric Equipment Co.,Ltd				
No.502	8, Zhennan Roa	ad, Shanghai, 2	01802, China.				
Tel: +86	6 13052000976	Fax: (+86-21)	5912-9722	DELIVE	RY TERM	FIN	AL DESTINATION
Email:a	anlia@lvdmall.co	m Cont	act: Anlia Du	FOR S	hanghai		
TO(CO	NSIGNEE):			100,0	nangnai		
Tel: +59	93-4-259-6400	Contact: And	rea Arroyo M.	Ch	ina		Shanghai
BANK	DETAILS:				PAG	CKING	
	ciary Name: S Name: Bank	•	ngyuan LEE anghai Nanxiang SubBranch		PACKED	IN CA	RTON
Bank /	ADD: No. 99	Jiefang Stre	et, Nanxiang Jiading Shanghai China	MEASUR	REMENT(CI	BM& I	(GS estimatedly)
SWIF	T Code: BKC	HCNBJ300					
Accou	ınt No.: 44945	9262998					
NO.	Ref. Pic	DESCRIPTIO N	DETAILS	Quantity	UNIT PR (USD)		SUBTOTAL (USD)
1		LVD-LL40W	40W/110-277V/5000K(with ballast)	49	US\$37.0	00	US\$1,813.00
2		LVD-LL50W	50W/110-277V/5000K(with ballast)	99	US\$39.0	00	US\$3,861.00
3		LVD-LL40W	40W/110-277V/5000K(without ballast)	49	US\$16.0	00	US\$784.00
4		LVD-LL50W	50W/110-277V/5000K(without ballast)	99	US\$18.0	00	US\$1,782.00

SAY TOTAL ***** U.S. DOLLARS ONLY.

1.Payment Terms: By T/T ,30% payment in advance,the balance before the shipment/loading

Shipping: in 5-7 working days upon receipt of first/full payment.
 Cancellation fee will be charged if the order is changed or cancelled after payment.

Anlia Du AUTHORIZED SIGNATURE:

Product name	Photo	Product code	Matched lamp	Weight (KG)	packing size (mm)	Material	Specification	price (USD/pcs) (FOB Shanghai)
Ceiling Luminare surface- mounted		0369	TX40,80W	4	395x395x245	Stamping molding aluminum	ф380хН205	23
Ceiling Luminare surface- mounted	O	0379	TX40,80W	4	330x330x260	cover, spray surface treatment technology, high intensity and high	ф315х315х245	23
Ceiling Luminare surface- mounted	No m	03-702	TX40,80W	4	360X360X290	temperature resistant PC cover.	Ф360хH290	27
Ceiling Luminare recessed		03-708	LL40,80W	4.5	600X600X130	Cold-rolled steel plate with PC cover	600x600x130mm	35
Ceiling Luminare recessed		03-710	TX40W,80W, 100W, 120W,150W	3.5	595X595X126	Cold-rolled steel plate, mirror aluminum reflector	595x595x126mm	38
Down Light recessed		0365	JX15,23W	0.3	The state of the s	High pure aluminum anode oxidation reflector with frosted glass	ф205хН235	12
Down Light		0362 (12")	TX80W	1	719x369x574 (12pcs/carton)	Mirror surface pure aluminum reflector, baffle,	ф337хН170	21
recessed		0362 (9.5")	TX40W	0.5	805x279x344 (12pcs/carton)	anode oxidation surface, could match with frosted glass	ф256хН148	10
Down Light recessed	IND M	03-401	TX40W	1.5	705x285x364 (12pcs/carton)	Cold-rolled steel plate, high quality and pure	Φ285xH180	20

2. Eneltec

Gobal Marking Center Emission (Swaper) Cast Life Tele Social (Swaper) Cast Life Tele Social (Swaper) Cast Life Cast Cast Life (Swaper) Cast Life Cast Cast Life (Swaper) Cast Cast Life Emission Cast Cast Life (Swaper) Cast Cast Life High News Additional Cast Life (Swaper) Cast Cast Cast Life (Swaper) Cast Cast Cast Cast Cast Cast Cast Cast

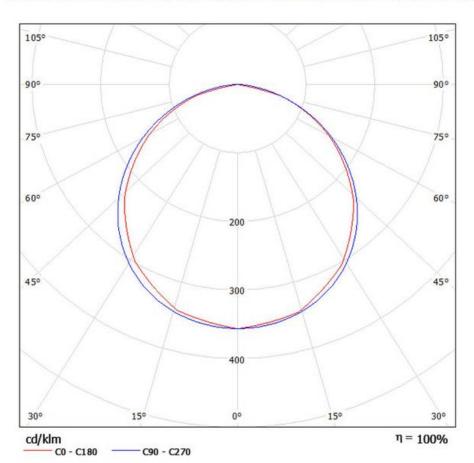
Quotation for LED Tubes

© U	deas
	n your i
<u> </u>	brighte
	_

										Ë	LED Tubes	S							
ž	Pidure	Detail Description	Model No.	Voltage	Lumen (lm)	LED Wa	Watts (W)	P. A. A.	Beam C Angle	Color	Cover	Product Dimension(mm)	Product Dimension(mm) Packing Dimension (mm)	NW/GW (Kg)	Life Time (hours)	FOB Shanghai Price (USD) 1-80 PCS	FOB Shanghai Price (USD) 100-499 P.CS	FOB Shanghai Price (USD) 500-698PCS	FOB Shanghai Price (USD) >>1000PCS
-		T5 LED Tube SMD	ENLT-15080SMD-01	85-265VAC/ 12VDC	700	105	7 0	0.95	2800 140° 4000 5500	2800-3300K/ 4000-4500K/ 5500-6000K	Clear/Frosted	570(L)×21(W)×38(H)	100PCS 1300×500×300	100PCS 36.0/40.0	20000	15.59	14.18	13.13	12.50
2	Tu.	T5 LED Tube SMD	ENLT-T5120SMD-01	85-285VAC/ 12VDC	1300	220	4	0.95	2800 140° 4000 5500	2800-3300H/ 4000-4500H/ 5500-6000H	Clear/Frosted	1170(L)×21(W)×39(H)	00EX300 1300×500×300	50PCS 32.4/36.0	20000	24.95	22.68	21.00	20.00
60		T5 LED Tube SMD	ENLT-15150SMD-01	85-285VAC/ 12VDC	1800	88	85	0.95	2800 140° 4000 5500	2800-3300K/ 4000-4500K/ 5500-6000K	Clear/Frosted	1470(L)×21(W)×39(H)	50PCS 1650×500×300	50PCS 37.8/42.0	20000	30.15	27.41	25.38	24.17
4	7	T8 LED Tube SMD	ENLT-T8080SMD-01	110VAC/ 220VAC	1080	22		0.5 12	2700 120° 4000 6000	2700-3200H/ 4000-4500H/ 6000-6500H	Clear/Frosted	590 Ф28mm	50PC 630×340×170	50PCS 7.0/9.6	20000	14.58	13.26	12.28	11.69
6		T8 LED Tube SMD	ENLT-T8090SMD-01	110VAC/ 220VAC	1440	128	12	0.5 12	2700 120* 4000 6000	2700-3200K/ 4000-4500K/ 6000-6500K	Clear/Frosted	894 Ф28mm	071×065×058	50PCS 10.0/14.0	20000	19.19	17.45	16.15	15.38
9		T8 LED Tube SMD	ENLT-T8120SMD-01	110VAC/ 220VAC	2160	168	8	0.5 12	2700 120* 4000 6000	2700-3200K/ 4000-4500K/ 6000-6500K	Clear/Frosted	1198 Ф26mm	60PCS 1230×330×170	50PCS 13.0/18.8	20000	23.99	21.81	20.19	19.23
7		T8 LED Tube SMD	ENLT-T8150SMD-01	110VAC/ 220VAC	2880	252	24 0	0.5 12	2700 120* 4000 6000	2700-3200K/ 4000-4500K/ 6000-6500K	Clear/Frosted	1498 Ф26mm	50PCS 1530×330×170	50PCS 17.0/25.0	50000	31.66	28.79	26.65	25.38
80		T8 LED Tube SMD	ENLT-T8080SMD-02	85-285VAC	006	06	10 0	0.95 12	2800 120* 4000 5500	2800-3300K/ 4000-4500K/ 5500-6000K	Clear/Frosted	590 Ф28mm	100PCS 1330×500×300	100PCS 33.0/34.0	50000	13.10	11.91	11.03	10.50
6	1	T8 LED Tube SMD	ENLT-T8120SMD-02	85-285VAC	1700	180	20 0	0.95	2800 120* 4000 5500	2800-3300K/ 4000-4500K/ 5500-6000K	Clear/Frosted	1198 Ф26mm	50PCS 1330×500×300	50PCS 31.0/32.0	50000	20.37	18.52	17.15	16.33
10	•	T8 LED Tube SMD	ENLT-T8150SMD-02	85-285VAC	1800	210	24 0	0.95 12	2800 120° 4000 5500	2800-3300KV 4000-4500KV 5500-6000K	Clear/Frosted	1498 Ф26mm	50PCS 1650×500×300	50PCS 38.0/39.0	50000	24.53	22.30	20.65	19.67
=		T10 LED Tube SMD	ENLT-T10080SMD-01	85-285VAC	1000	1	0 01	0.95	2800 120° 4000 5500	2800-3300KV 4000-4500KV 5500-6000K	Clear/Frosted	590 030mm	100PCS 1330×500×300	100PCS 33.0/34.0	90009	16.22	14.74	13.65	13.00
12	33	T10 LED Tube SMD	ENLT-T10120SMD-01	85-285VAC	2000	288	18 0	0.95 12	2800 120* 4000 5500	2800-3300K/ 4000-4500K/ 5500-6000K	Clear/Frosted	1198 4 30mm	50PCS 1330×500×300	50PCS 31.0/32.0	50000	25.99	23.63	21.88	20.83
13	1	T10 LED Tube SMD	ENLT-T10150SMD-01	85-285VAC	2200	380	23 0	0.95 12	120° 2800 150° 4000 5500	2800-3300K/ 4000-4500K/ 5500-6000K	Clear/Frosted	1498 Φ30mm	00E×009×0991	50PCS 38.0/39.0	20000	32.22	29.30	27.13	25.83

3. Seipro Industry

De: Karson@seiproled.com


Para: "Andrea Arroyo" <andrea.arroyo@celco.com.ec> Enviados: Martes, 25 de Febrero 2014 3:17:15

Asunto: Re: Do you have any feedback about the LED Panel light?

Dear Andrea Arroyo M.,

Thanks for your information about the tunnel light project.

Our 36watts LED Panel light can be made in 600*600mm and 595*595mm. The distribution curve as follow:

Enclosed you can see the IES file.

The price with detail technical information as follow:

Model No.	SP-P36\	VA-0312	
Fixture Dimension	600*600)*12MM	
Quantity	≥10	0pcs	
FOB Guangzhou Price	With Silver color frame in US\$80.00/pc	With White color frame in US\$85.00/pc	
Light Source	LED 36W	SMD3014	
Color Temperature	2700-	5500K	
Color-rendering Index	>(30	
Beam Angle	12	0°	
Input Voltage	AC 85-265	V, 50/60Hz	
Power Factor	>0.9		
LED Consumption	36W		
Initial Flux	>2, 800LM		
Working Enviroment	-30℃~+50℃		
Life Span	>50,000Hrs		
IP Rating	IP.	40	
Net Weight	3.04	(GS	
Material	Aluminum+l	GP+PMMA	

Model SP-P18WA-0303 with similar characteristics is FOB Guangzhou Price is: With Silver color frame in US\$55.00/pc and With White color frame in US\$60.00/pc.

Remarks:

- 1. Price Term: FOB Guangzhou, USD/pc.
- 2. Payment Term: T/T in advance, 70% deposit, 30% balance to be paid before shipment.
- 3. Delivery Time: 15 days after deposit received.
- 4. Warranty: 2 years.
- 5. Validity of offer: 3 months.

We attached some pictures for you.

Best regards!

Karson

Marketing Director

Seipro Industry Co., Ltd

Address: Zhu Cun, Tianhe District, Guangzhou City, Guangdong Province, China 510660

Website: www.seiproled.com
E-mail: Karson@seiproled.com
Cell Phone: 0086-18819825782

Tel: 0086-20-82529963 Fax: 0086-20-87635850

MSN: Karson_2008@hotmail.com

Skype: Karson_2007

Anexo 5. Cuadro de COSTO CELCO por importación de las lámparas

		FOB LISTA	FLETE MARITIMO CHINA-ECU	DESADUANIZACIÓN + IMPUESTOS	FLETE INTERNO	COSTO CELCO
		1,00	1,12	1,06	0,03	0,60
LED/	Modelo 1 SP-P36WA-0312	80,00	89,60	95,20	98,14	\$ 98,14
KARSON	Modelo 2 SP-P18WA-0303	55,00	61,60	65,45	67,47	\$ 67,47
ENELTEC	Modelo 1 ENLT-T8120SMD-01	23,99	26,87	28,55	29,43	\$ 29,43
/STELLA	Modelo 2 ENLT-T8060SMD-01	14,58	16,33	17,35	17,89	\$ 17,89
LVD/	Modelo 1 LVD-ZX50000+LL50W	74,00	82,88	88,06	90,78	\$ 90,78
ANLIA	Modelo 2 LVD-ZX50000+LL40W	72,00	80,64	85,68	88,33	\$ 88,33

Fuente: CELCO CIA. LTDA.

Anexo 6. Recomendación de la gestión y mantenimiento de las lámparas

La eficiencia energética de cada lámpara es más notoria con el paso de los años de funcionamiento debido a la depreciación del flujo luminoso que empieza a mostrar cada lámpara en relación al valor inicial del mismo, esto es a lo largo de su vida útil y debido a que no hay manipulación de un humano después de instalada, prácticamente esto se debe exclusivamente a la suciedad que se acumula en las lámparas y también por lo voltajes de energía suministrados por la empresa eléctrica de cada país/región. Por lo que la suciedad acumulada es un factor que se puede controlar con mantenimientos generales a las lámparas.

Este mantenimiento se recomienda realizarlo de una manera muy general, de manera semestral. El mantenimiento incluye:

- Limpieza externa de las lámparas.
- Revisión periódica del voltaje de entrada para las luminarias en la caja de breaker.
- * Revisión periódica del estado de los distintos componentes de la instalación.

Como medida correctiva en caso de presentarse alguna falla de una lámpara se debe recurrir a lo siguiente:

Sustitución de lámparas. Debe hacerse al final de la vida útil indicada por el fabricante, ya que, aunque no hayan fallado, su eficacia habrá disminuido. En grandes instalaciones es aconsejable sustituir las lámparas por grupos en lugar de individualmente para mantener los niveles de iluminación adecuados. Como gestión del alumbrado en grandes oficinas e industrias se deben considerar los siguientes puntos:

- Control de consumos y costes
- Control de horarios de funcionamiento

Anexo 7. Ejemplos en Europa de reducción del consumo de energía por iluminación interior (tomado del Institute for Energy and Transport, European Commission)

La Comisión Europea inició en Febrero del 2000 el Programa Greenlight, el cual tiene como objetivo llevar a niveles más bajos los consumos de energía eléctrica por conceptos de iluminación interior en los sectores de edificios no residenciales de carácter público y privado y además en alumbrado público, para de esta manera contribuir en la reducción del nivel de contaminación y limitar el calentamiento global.

El programa motiva a las empresas y organizaciones a comprometerse en llevar el sistema de iluminación que poseen actualmente en sus edificios e instalaciones a innovarlo con nuevas tecnologías de iluminación existentes en el mercado para tratar de obtener entre el 30 y 50% de ahorro en electricidad.

Empresas que se han adherido a ser parte de este programa, reciben un distintivo que pueden exponer en sus edificios como reconocimiento avalado por la Comisión Europea.

Algunas de las empresas con sus resultados basados en el Programa Greenlight serán detallados a continuación:

IDAE

El IDAE (Instituto para la Diversificación y Ahorro de la Energía) como socio del programa, se encarga de coordinar el programa GreenLight a nivel nacional prestando su asesoramiento a las empresas. Además, ha mejorado el sistema de

iluminación de su sede, situada en Madrid. El edificio fue reformado para adecuarlo a las necesidades del Instituto y realizando las mejoras necesarias en la iluminación para cumplir los requisitos del programa europeo GreenLight. Las actuaciones realizadas han sido las siguientes:

- Sustitución de las luminarias existentes por otras más eficientes. De esta forma se redujo el número de luminarias instaladas, disminuyendo el consumo eléctrico.
- Zonificación de las distintas áreas de trabajo, de forma que no es preciso iluminar la totalidad de las plantas a la vez, sino sólo aquellas que es preciso en cada momento.
- ❖ Aprovechamiento de la luz natural. En la planta ático (la de mayor insolación) se instalaron foto sensores en aquellas luminarias próximas al patio central y a la calle. Sólo cuando es necesario, las lámparas funcionan al 100 % de su flujo.
- ❖ En las zonas de escaleras y baños se instalaron interruptores temporizados.

Todas las acciones anteriormente mencionadas se reflejan en las siguientes tablas de resultados:

	Instalación Antigua	Instalación Nueva
Luminaria predominante (zonas de trabajo)	2 x 55 W (116 W)	3 x 14 W (42 W)
Reactancia	Electrónica	Electrónica
Potencia instalada (W)	83.316	46.572
Consumo (kWh/año)	237.462	84.785
Coste inicial (€)	128.000	128.000
Coste anual de explotación (€/año)	13.344	4.765

Resultados	
Reducción de kW instalados	50 %
Reducción en el consumo eléctrico	64 %

Fuente: IET

Supermercado Súper U

Súper U, ubicado en Francia, cambió el concepto de iluminación para sus nuevos supermercados. Hasta hace poco, las nuevas tiendas estaban provistas de lámparas fluorescentes de 26 mm de diámetro con balastos electromagnéticos y reflectores industriales con lamas y reflector blancos.

Las luminarias estaban colocadas normalmente a una altura de 5m, y distribuidas de forma que los niveles de luz sobrepasaban los 1.000 lux. Su nuevo concepto de iluminación consiste en disminuir los adornos y en el uso de lámparas de 16mm de diámetro con balastos electrónicos y luminarias con lamas de baja luminancia. Los niveles de iluminación se reducen a 600 lux, y un tercio o dos terceras partes de la iluminación general pueden apagarse cuando es necesaria menos

luz. Los resultados en una de sus tiendas son los mostrados en la tabla siguiente. La comparación se ha realizado con una instalación nueva hecha antes de la unión al programa GreenLight.

Resultados	
Ahorro de energía eléctrica en iluminación	78.680 kWh/año
Reducción de potencia	15,6 kW
Reducción de electricidad usada en las áreas cubiertas	36 %
Ahorro en energía	5.901 €/año
Periodo de amortización	3 años y 6 meses

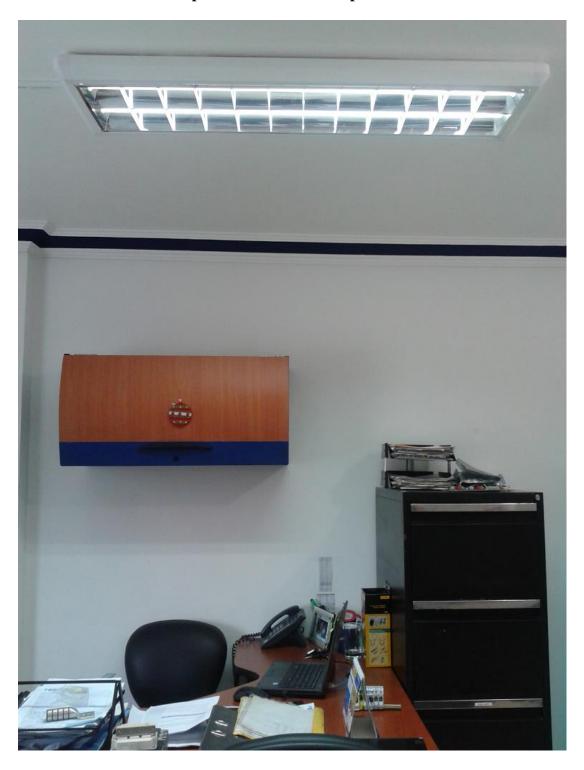
Fuente: IET

Carrefour Italia

En este caso se cambiaron todas las antiguas e ineficientes luminarias suspendidas. Se sustituyeron por nuevos elementos, equipados con reflectores y lámparas fluorescentes lineales de 26 mm de diámetro (2 x 58W). Estas lámparas funcionan con balastos electrónicos y son reguladas en función de la luz natural dentro del edificio. También son reguladas antes y después de las horas de apertura y cierre cuando únicamente está presente el personal. Comparando con la antigua instalación de iluminación, la nueva asegura obtener la misma cantidad de iluminación, además de los siguientes ahorros:

Resultados	
Ahorro de energía eléctrica en iluminación	423.000 kWh/año
Reducción de potencia	80 kW
Reducción de electricidad usada en las áreas cubiertas	31 %
Ahorro en energía	42.300 €/año
Periodo de amortización (teniendo en cuenta, en el coste del equipo, la instalación del mismo)	3 años

Fuente: IET


Oficinas en Noruega

En el edificio de oficinas "Vital Eiendomsforvalting As" se sustituyó la instalación de iluminación por otra más eficiente. Los resultados conseguidos son los siguientes:

Instalación antigua	Instalación nueva		
Sustitución de	fuentes de luz		
2 x 36 W (T8)	1 x 49 W (T5)		
1 x 36 W (T8)	1 x 28 W (T5)		
30,8 W/m²	10,2 W/m²		
Consumo anu	ual de energía		
1.200.000 kWh	400.000 kWh		
Resultados			
Reducción de kW instalados	60 %		
Reducción de las horas de uso	20 %		
Reducción en el consumo de energía	67 %		
Periodo de amortización	4 años		

Fuente: IET

Anexo 8. Fotos de las lámparas actuales en la empresa CELCO CIA. LTDA.

Anexo 9. Resolución nº 034/11 del CONELEC

SESIÓN DE DIRECTORIO DE 9 DE JUNIO DE 2011

RESOLUCIÓN No. 034/11

EL DIRECTORIO DEL CONSEJO NACIONAL DE ELECTRICIDAD,

CONELEC

CONSIDERANDO:

- Que, el Artículo 2 del Mandato Constituyente No. 1 dispone que: "...las decisiones de la Asamblea Constituyente son jerárquicamente superiores a cualquier otra norma del orden jurídico y de obligatorio cumplimiento para todas las personas naturales, jurídicas y demás poderes públicos sin excepción alguna. Ninguna decisión de la Asamblea Constituyente será susceptible de control o impugnación por parte de alguno de los poderes constituidos".
- **Que,** el Artículo 313 que consta dentro del Capítulo Quinto: "Sectores estratégicos, servicios y empresas públicas" de la Constitución de la República del Ecuador, establece: "El Estado se reserva el derecho de administrar, regular, controlar y gestionar los sectores estratégicos, de conformidad con los principios de sostenibilidad ambiental, precaución, prevención y eficiencia".
- **Que,** el Artículo 314 del mismo cuerpo normativo establece "El Estado garantizará que los servicios públicos y su provisión respondan a los principios de obligatoriedad, generalidad, uniformidad, eficiencia, responsabilidad, universalidad, accesibilidad, regularidad, continuidad y calidad. El Estado dispondrá que los precios y tarifas de los servicios públicos sean equitativos, y establecerá su control y regulación".
- Que, el literal d) del Artículo 13 de la Ley de Régimen del Sector Eléctrico faculta al CONELEC a aprobar los pliegos tarifarios para los servicios regulados de transmisión y los consumidores finales de distribución.
- **Que,** el literal e) del Artículo 15 del Reglamento General de la Ley de Régimen del Sector Eléctrico faculta al CONELEC para aprobar los pliegos tarifarios para los ser vicios regulados de transmisión y los consumidores finales de distribución.
- **Que,** el Ministerio de Electricidad y Energía Renovable, mediante Oficio No. 716-DM-SEREE-2010-2393 de 20 de julio de 2010, solicitó al CONELEC elabore un estudio referente a la implementación de esquemas tarifarios con señales de eficiencia energética.
- **Que**, el CONELEC, mediante Oficio No. DE-10-1150 de 30 de julio de 2010, elaboró un estudio con varias alternativas de esquemas tarifarios con señales de eficiencia que se presentó en el documento denominado: "Propuestas de Esquemas Tarifarios para el Sector Residencial".
- Que, de conformidad con lo dispuesto en el numeral 11 de la Regulación No. CONELEC 006/08: APLICACIÓN DEL MANDATO CONSTITUYENTE No. 15, "El

CONELEC determinará anualmente el pliego tarifario que entrará en vigencia a partir del 1 de enero del año siguiente de su emisión. Este pliego podrá ser revisado tantas veces cuantas el CONELEC lo considere necesario".

- Que, el Directorio del CONELEC, mediante Resolución No. 013/11, de 17 de marzo de 2011, numerales 12 y 13, aprobó los cargos tarifarios para las empresas eléctricas de distribución, que forman parte del Pliego Tarifario, que se encuentran vigentes desde el 1 de enero de 2011.
- Que, mediante Memorando No. M-DT-11-133 de 6 de junio de 2011, la Dirección de Tarifas del CONELEC, remitió a la Dirección Ejecutiva el documento denominado: "ESQUEMA TARIFARIO CON SEÑALES DE EFICIENCIA SECTOR RESIDENCIAL, Informe Final para su implementación", en el que se detallan las actividades realizadas; así como, los resultados del esquema tarifario a aplicarse.
- **Que**, mediante Oficio No. O-DE-11-836 de 7 de junio de 2011, la Dirección Ejecutiva remitió a los Señores Miembros del Directorio el Informe antes citado, recomendando su aprobación, previo el análisis pertinente; y,

En ejercicio de sus atribuciones legales,

RESUELVE

- Acoger el Informe presentado por Dirección Ejecutiva con Oficio No. O-DE-11-836, antes citado.
- Conservar la aplicación tarifaria vigente para los consumidores pertenecientes a la Categoría General del Pliego Tarifario, esto es, el comercio, la industria y la prestación de servicios públicos y privados.
- Mantener los valores de los cargos tarifarios para los consumos de hasta los 500 kWh-mes de sector residencial aprobados con Resolución No. 013/11, los mismos que se aplicaran en la facturación de todos los consumidores de la Categoría Residencial.
- Aprobar, para la categoría Residencial, la modificación de los cargos tarifarios, en los rangos de consumo correspondientes, de acuerdo a la siguiente tabla:

CARGO TARIFARIO	ESQUEMA (¢USD/kWh)		
RANGO DE CONSUMO	QUITO	GUAYAQUIL	RESTO DE EMPRESAS
0 - 50	6.80	6.80	8.10
51 - 100	7.10	7.10	8.30
101 - 150	7.30	7.30	8.50
151 - 200	8.00	8.00	8.70
201 - 250	8.70	8.60	8.90
251 - 300	8.90	9.30	9.10
301 - 350	8.90	9.30	9.30
351 - 500	8.90	9.30	9.50
501 - 750	11.85		
751 - 1000	16.05		
1001 - 1500	26.48		
1501 - 2000	42.56		
Sup > 2000	67.12		

- Incorporar los valores de los cargos tarifarios, en el pliego tarifario aprobado con Resolución 013/11, los mismos que se aplicarán por parte de las empresas distribuidoras para la facturación de los consumos de energía eléctrica a partir del 1 de julio de 2011.
- Encargar al Director Ejecutivo del CONELEC establecer las directrices para la implementación y seguimiento de la modificación del Pliego Tarifario".

ÁREA RESPONSABLE: DE - DT

BIBLIOGRAFÍA

- [1].GUÍA TÉCNICA DE EFICIENCIA ENERGÉTICA EN ILUMINACIÓN.

 OFICINAS, IDEA (Instituto para la Diversificación y Ahorro de la Energía) y

 CEI (D. Gonzalo Ezquerro, Dña. Mar Gandolfo, D. Alfonso Ramos y D. José

 Ignacio Urrac), editorial del IDEA, Marzo del 2001.
- [2].LÁMPARAS Y SUS COMPONENTES, Universidad Tecnológica Nacional (UTN) de Argentina, Asociación de profesores de la Facultad Regional Cordoba (FRC).
- [3].SYLVANIA, tríptico de luminarias modulares, HAVELLS-SYLVANIA, Colombia, Bogotá, 2004.
- [4]. CONELEC, Regulación N° CONELEC 034/11, Quito, Ecuador, 2011.
- [5].CONELEC, Folleto Resumen Multianual de la Estadística del Sector Eléctrico Ecuatoriano, Quito, Ecuador, 2013.

- [6].ILUMINACIÓN, Enciclopedia de Salud y Seguridad en el trabajo (Organización internacional de trabajo), Juan Guasch Farrás, volumen II, capítulo 46, Ministerio de Trabajo y Asuntos Sociales Subdirección General de Publicaciones, Madrid, 1998.
- [7].ILUMINACIÓN EN LOS CENTROS DE TRABAJO, Centro nacional de condiciones de trabajo, Ricardo Chavarría Cosar, SIAFA Seguridad, Higiene y Medio ambiente, Buenos Aires, Argentina, 1993.
- [8].LA PREVENCIÓN DE RIESGOS EN LOS LUGARES DE TRABAJO, Iluminación, Instituto Sindical de Trabajo, Ambiente y Salud (ISTAS), Sexta edición, noviembre del 2013.
- [9].DISEÑO EFICIENTE DE LA ILUMINACIÓN INTERIOR EN LOS EDIFICIOS, tutorial n°281, Ingeniero Industrial Hermenegildo Rodríguez Galbarro, Ingemecánica, Sevilla, España, 2001.
- [10]. REGLAMENTO DE SEGURIDAD Y SALUD DE LOS TRABAJADORES

 Y MEJORAMIENTO DEL MEDIO AMBIENTE DE TRABAJO, Seguridad
 laboral y salud ocupacional en Ecuador, Higiene Industrial y Ambiente, 1998.

[11]. GUÍA TÉCNICA DE ILUMINACIÓN EFICIENTE, Sector residencial y terciario, Gráficas Arias Montano S.A., Madrid, 2006